BOUNDEDNESS IN A THREE-COMPONENT QUASILINEAR CHEMOTAXIS SYSTEM ON ALOPECIA AREATA

被引:4
|
作者
Zhang, Wenjie [1 ]
Zhao, Sijun [1 ]
Xin, Qiao [1 ,2 ]
机构
[1] Yili Normal Univ, Coll Math & Stat, Yining 835000, Peoples R China
[2] Yili Normal Univ, Inst Appl Math, Yining 835000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Chemotaxis; Boundedness; Quasilinear; Global existence; KELLER-SEGEL SYSTEM; BLOW-UP;
D O I
10.3934/dcdsb.2023153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a three component quasilinear chemo-taxis system for alopecia areata { ut = V <middle dot> (D1(u)Vu) - chi 1V <middle dot> (S1(u)Vw) + w - mu 1u gamma 1 , x E Omega, t > 0,vt = V <middle dot> (D2(v)Vv) - chi 2V <middle dot> (S2(v)Vw) + w + ruv - mu 2v gamma 2, x E Omega, t > 0,wt= Delta w + u + v- w, x E Omega, t > 0,in a smoothly bounded domain Omega c R-n(n > 1) with Neumman boundary conditions, where parameters chi i, mu i (i = 1,2) and r are positive. The functions Di(<middle dot>) and Si(<middle dot>) belong to C-2 satisfying Di(s) > (s + 1)(alpha i) and Si(s) < s(s + 1)(beta i-1) with alpha(i), beta(i)is an element of R for all s > 0 and i = 1, 2. We study the global boundedness of classical solutions existing without any further restrictions on the size of system parameters in two cases: (i) both the diffusion and the logistic damping balance the cross-diffusion; (ii) the logistic damping inhibits the cross-diffusion. Those results not only extend the existing results by Xu (JMAA, 2023), but also draw some new conclusions.
引用
收藏
页码:1744 / 1763
页数:20
相关论文
共 50 条
  • [21] Boundedness to a quasilinear chemotaxis–consumption system with singular sensitivity in dimension one
    Xiangdong Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [22] Global Boundedness of Solutions to a Quasilinear Chemotaxis System with Nonlocal Nonlinear Reaction
    Tao, Xueyan
    Fang, Zhong Bo
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (02):
  • [23] Boundedness in a quasilinear two-species chemotaxis system with consumption of chemoattractant
    Zhang, Jing
    Hu, Xuegang
    Wang, Liangchen
    Qu, Li
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (31) : 1 - 12
  • [24] BOUNDEDNESS IN A PARABOLIC-PARABOLIC QUASILINEAR CHEMOTAXIS SYSTEM WITH LOGISTIC SOURCE
    Wang, Liangchen
    Li, Yuhuan
    Mu, Chunlai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (02) : 789 - 802
  • [25] Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system
    Wang, Yilong
    Xiang, Zhaoyin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3159 - 3179
  • [26] GLOBAL BOUNDEDNESS IN A QUASILINEAR FULLY PARABOLIC CHEMOTAXIS SYSTEM WITH INDIRECT SIGNAL PRODUCTION
    Ding, Mengyao
    Wang, Wei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (09): : 4665 - 4684
  • [27] Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source
    Liu, Ji
    Zheng, Jia-Shan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 1117 - 1136
  • [28] Boundedness of the Higher-Dimensional Quasilinear Chemotaxis System with Generalized Logistic Source
    Tang, Qingquan
    Xin, Qiao
    Mu, Chunlai
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (03) : 713 - 722
  • [29] Global boundedness in a quasilinear chemotaxis system with general density-signal governed
    Wang, Wei
    Ding, Mengyao
    Li, Yan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (05) : 2851 - 2873
  • [30] Global boundedness in quasilinear attraction-repulsion chemotaxis system with logistic source
    Tian, Miaoqing
    He, Xiao
    Zheng, Sining
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 : 1 - 15