Subsurface anomaly detection utilizing synthetic GPR images and deep learning model

被引:3
|
作者
Abdelmawla, Ahmad [1 ]
Ma, Shihan [1 ]
Yang, Jidong J. [1 ]
Kim, S. Sonny [1 ]
机构
[1] Univ Georgia, Sch Environm Civil Agr & Mech Engn, Coll Engn, 597 DW Brooks Dr, Athens, GA 30602 USA
关键词
data augmentation; deep learning; ground penetrating radar; object detection; pavement inspection; GROUND-PENETRATING RADAR;
D O I
10.12989/gae.2023.33.2.203
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
One major advantage of ground penetrating radar (GPR) over other field test methods is its ability to obtain subsurface images of roads in an efficient and non-intrusive manner. Not only can the strata of pavement structure be retrieved from the GPR scan images, but also various irregularities, such as cracks and internal cavities. This article introduces a deep learning-based approach, focusing on detecting subsurface cracks by recognizing their distinctive hyperbolic signatures in the GPR scan images. Given the limited road sections that contain target features, two data augmentation methods, i.e., feature insertion and generation, are implemented, resulting in 9,174 GPR scan images. One of the most popular real-time object detection models, You Only Learn One Representation (YOLOR), is trained for detecting the target features for two types of subsurface cracks: bottom cracks and full cracks from the GPR scan images. The former represents partial cracks initiated from the bottom of the asphalt layer or base layers, while the latter includes extended cracks that penetrate these layers. Our experiments show the test average precisions of 0.769, 0.803 and 0.735 for all cracks, bottom cracks, and full cracks, respectively. This demonstrates the practicality of deep learning-based methods in detecting subsurface cracks from GPR scan images.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 50 条
  • [21] Deep Active Learning for Anomaly Detection
    Pimentel, Tiago
    Monteiro, Marianne
    Veloso, Adriano
    Ziviani, Nivio
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [22] Deep Learning for Anomaly Detection: A Review
    Pang, Guansong
    Shen, Chunhua
    Cao, Longbing
    Van den Hengel, Anton
    ACM COMPUTING SURVEYS, 2021, 54 (02)
  • [23] Generating Synthetic Computed Tomography (CT) Images to Improve the Performance of Machine Learning Model for Pediatric Abdominal Anomaly Detection
    Bhattacharya, Samayan
    Bhattacharya, Avigyan
    Shahnawaz, Sk
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3867 - 3875
  • [24] Network Anomaly Detection with Deep Learning
    Cekmez, Ugur
    Erdem, Zeki
    Yavuz, Ali Gokhan
    Sahingoz, Ozgur Koray
    Buldu, Ali
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [25] Deep learning for collective anomaly detection
    Ahmed, Mohiuddin
    Pathan, Al-Sakib Khan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 21 (01) : 137 - 145
  • [26] A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images
    Jain, Samir
    Seal, Ayan
    Ojha, Aparajita
    Yazidi, Anis
    Bures, Jan
    Tacheci, Ilja
    Krejcar, Ondrej
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [27] A lightweight deep learning model for classification of synthetic aperture radar images
    Passah, Alicia
    Kandar, Debdatta
    ECOLOGICAL INFORMATICS, 2023, 77
  • [28] A joint model based on graph and deep learning for hyperspectral anomaly detection
    Zhang, Lili
    Lin, Fang
    Fu, Baohong
    INFRARED PHYSICS & TECHNOLOGY, 2024, 139
  • [29] Vulnerability of Deep Learning Model based Anomaly Detection in Vehicle Network
    Wang, Yi
    Chia, Dan Wei Ming
    Ha, Yajun
    2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 293 - 296
  • [30] Hybrid Deep Learning Model for Paediatric Cardiac Anomaly Detection and Classification
    Netto A.N.
    Abraham L.
    Philip S.
    SN Computer Science, 5 (5)