Genome-wide identification and characterization of TCP gene family in Dendrobium nobile and their role in perianth development

被引:0
|
作者
Wei, Xinrui [1 ]
Yuan, Meng [1 ]
Zheng, Bao-Qiang [1 ]
Zhou, Lin [1 ]
Wang, Yan [1 ]
机构
[1] Chinese Acad Forestry, Res Inst Forestry, State Key Lab Tree Genet & Breeding, Beijing, Peoples R China
来源
关键词
TCP gene family; expression pattern; perianth development; protein interaction; Dendrobium nobile; MADS-BOX GENES; TRANSCRIPTION FACTORS; FLOWER DEVELOPMENT; PLANT-GROWTH; CLASS-I; ORCHID; EXPRESSION; DOMAIN; EVOLUTION; PROTEINS;
D O I
10.3389/fpls.2024.1352119
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
TCP is a widely distributed, essential plant transcription factor that regulates plant growth and development. An in-depth study of TCP genes in Dendrobium nobile, a crucial parent in genetic breeding and an excellent model material to explore perianth development in Dendrobium, has not been conducted. We identified 23 DnTCP genes unevenly distributed across 19 chromosomes and classified them as Class I PCF (12 members), Class II: CIN (10 members), and CYC/TB1 (1 member) based on the conserved domain and phylogenetic analysis. Most DnTCPs in the same subclade had similar gene and motif structures. Segmental duplication was the predominant duplication event for TCP genes, and no tandem duplication was observed. Seven genes in the CIN subclade had potential miR319 and -159 target sites. Cis-acting element analysis showed that most DnTCP genes contained many developmental stress-, light-, and phytohormone-responsive elements in their promoter regions. Distinct expression patterns were observed among the 23 DnTCP genes, suggesting that these genes have diverse regulatory roles at different stages of perianth development or in different organs. For instance, DnTCP4 and DnTCP18 play a role in early perianth development, and DnTCP5 and DnTCP10 are significantly expressed during late perianth development. DnTCP17, 20, 21, and 22 are the most likely to be involved in perianth and leaf development. DnTCP11 was significantly expressed in the gynandrium. Specially, MADS-specific binding sites were present in most DnTCP genes putative promoters, and two Class I DnTCPs were in the nucleus and interacted with each other or with the MADS-box. The interactions between TCP and the MADS-box have been described for the first time in orchids, which broadens our understanding of the regulatory network of TCP involved in perianth development in orchids.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Genome-wide identification and expression pattern of alkaline/neutral invertase gene family in Dendrobium catenatum
    Liu, Chen
    Xi, Hangxian
    Chen, Xueliang
    Zhao, Yuxue
    Yao, Jinbo
    Si, Jinping
    Zhang, Lei
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021, 35 (01) : 527 - 537
  • [32] Genome-Wide Characterization and Expression Analysis of HD-ZIP Gene Family in Dendrobium officinale
    Yang, Qianyu
    Xiang, Weibo
    Li, Zhihui
    Nian, Yuxin
    Fu, Xiaoyun
    Zhou, Guangzhu
    Li, Linbao
    Zhang, Jun
    Huang, Guiyun
    Han, Xiao
    Xu, Lu
    Bai, Xiao
    Liu, Lei
    Wu, Di
    FRONTIERS IN GENETICS, 2022, 13
  • [33] Genome-wide identification and characterization of laccase gene family in Citrus sinensis
    Xu, Xiaoyong
    Zhou, Yipeng
    Wang, Bin
    Ding, Li
    Wang, Yue
    Luo, Li
    Zhang, Yueliang
    Kong, Weiwen
    GENE, 2019, 689 : 114 - 123
  • [34] GENOME-WIDE IDENTIFICATION AND CHARACTERIZATION OF THE SBP GENE FAMILY IN EUCALYPTUS GRANDIS
    Buyuk, I
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (05): : 6181 - 6193
  • [35] Genome-wide identification and characterization of Dof gene family in Salvia miltiorrhiza
    Wang, Xinyu
    Wang, Qichao
    Hao, Siyu
    Zhu, Jianjun
    Kai, Guoyin
    Zhou, Wei
    ORNAMENTAL PLANT RESEARCH, 2024, 4
  • [36] Genome-Wide Identification and Characterization of the Pirin Gene Family in Nicotiana benthamiana
    Xu, Gecheng
    Shi, Jingjing
    Qiao, Jiliang
    Liao, Pingan
    Yong, Bin
    Zhong, Kaili
    GENES, 2025, 16 (02)
  • [37] Genome-Wide Identification and Characterization of the GRF Gene Family in Melastoma dodecandrum
    Huang, Jie
    Chen, Gui-Zhen
    Ahmad, Sagheer
    Hao, Yang
    Chen, Jin-Liao
    Zhou, Yu-Zhen
    Lan, Si-Ren
    Liu, Zhong-Jian
    Peng, Dong-Hui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
  • [38] Genome-wide identification and characterization of the fibrillin gene family in Triticum aestivum
    Jiang, Yaoyao
    Hu, Haichao
    Ma, Yuhua
    Zhou, Junliang
    PEERJ, 2020, 8
  • [39] Genome-wide identification and characterization of the cyclin gene family in Populus trichocarpa
    Dong, Qing
    Zhao, Yang
    Jiang, Haiyang
    He, Hongsheng
    Zhu, Suwen
    Cheng, Beijiu
    Xiang, Yan
    PLANT CELL TISSUE AND ORGAN CULTURE, 2011, 107 (01) : 55 - 67
  • [40] Genome-wide identification and characterization of the Dof gene family in Medicago truncatula
    Shu, Y. J.
    Song, L. L.
    Zhang, J.
    Liu, Y.
    Guo, C. H.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (03): : 10645 - 10657