Noisy quantum parameter estimation with indefinite causal order

被引:3
|
作者
An, Min [1 ,2 ]
Ru, Shihao [1 ,2 ]
Wang, Yunlong [1 ,2 ]
Yang, Yu [1 ,2 ]
Wang, Feiran [1 ,2 ,3 ]
Zhang, Pei [1 ,2 ]
Li, Fuli [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Minist Educ, Key Lab Nonequilibrium Synth & Modulat Condensed M, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Phys, Shaanxi Prov Key Lab Quantum Informat & Quantum Op, Xian 710049, Peoples R China
[3] Xian Polytech Univ, Sch Sci, Xian 710048, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Causal ordering - Encodings - Estimation precision - Kraus operators - Optimal probe - Parameters estimation - Phase-estimation - Property - Quantum metrology - Quantum parameters;
D O I
10.1103/PhysRevA.109.012603
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optimal probe states and measurements are always required to achieve the best estimation precision in quantum metrology. In the actual physical environment, ubiquitous noise hinders estimation precision and amplifies the challenges of optimizing the probe states and measurements. In this study we extend a theoretical proposal, presented in Phys. Rev. A 103, 032615 (2021), to encompass noisy general Pauli channels for SU(2) phase estimation. By utilizing a superposition of different causal orders of two channels, we establish theoretically a probe-state-independent criterion for the estimation precision. We show that the probe-state-independent property results from the noncommutativity of the Kraus operators of the parameter-encoding channels. Based on this criterion, one can find some parameter-encoding channels without the requirement of precisely preparing the probe state. Moreover, our scheme requires only deterministic projection measurement on the control qubit. In this way, one can simultaneously avoid optimizing both the probe states and measurements. In addition, we also show that the estimation precision and probe-state-independent property of the indefinite causal order scheme are independent of representations of the Kraus operators. This alleviates the experimental challenges in realizing quantum channels. We demonstrate experimentally the advantages of the indefinite causal order for phase estimation of an SU(2) unitary transformation in the three kinds of quantum noise channels. Our result shows that the dynamic evolution of indefinite causal order can outperform the conventional cascaded estimation scenario at high noise levels, exhibiting high robustness and feasibility in practical estimation tasks.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Possibilistic and maximal indefinite causal order in the quantum switch
    van der Lugt, Tein
    Ormrod, Nick
    QUANTUM, 2024, 8
  • [22] Quantum channel estimations via indefinite causal order
    Juan Gu
    Zhi Yin
    Longsuo Li
    Quantum Information Processing, 22
  • [23] Probing the Quantum Depolarizing Channel with Mixed Indefinite Causal Order
    Frey, Michael
    QUANTUM INFORMATION SCIENCE, SENSING, AND COMPUTATION XI, 2019, 10984
  • [24] Remote creation of quantum coherence via indefinite causal order
    Kaur, Jasleen
    Bagchi, Shrobona
    Pati, Arun K.
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [25] Indefinite causal order aids quantum depolarizing channel identification
    Michael Frey
    Quantum Information Processing, 2019, 18
  • [26] Evading noise in multiparameter quantum metrology with indefinite causal order
    Goldberg, Aaron Z.
    Heshami, Khabat
    Sanchez-Soto, L. L.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [27] Indefinite causal order aids quantum depolarizing channel identification
    Frey, Michael
    QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
  • [28] Remote creation of quantum coherence via indefinite causal order
    Jasleen Kaur
    Shrobona Bagchi
    Arun K. Pati
    Quantum Information Processing, 22
  • [29] Memory in quantum processes with indefinite time direction and causal order
    Karpat, Goktug
    Cakmak, Baris
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [30] Mapping indefinite causal order processes to composable quantum protocols in a spacetime
    Salzger, Matthias
    Vilasini, V.
    NEW JOURNAL OF PHYSICS, 2025, 27 (02):