Differentially Private Federated Learning With an Adaptive Noise Mechanism

被引:6
|
作者
Xue, Rui [1 ]
Xue, Kaiping [1 ,2 ,3 ]
Zhu, Bin [1 ]
Luo, Xinyi [1 ]
Zhang, Tianwei [4 ]
Sun, Qibin [1 ]
Lu, Jun [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Sch Cyber Sci & Technol, Hefei 230027, Anhui, Peoples R China
[2] Key Lab Med Elect & Digital Hlth Zhejiang Prov, Jiaxing 314001, Peoples R China
[3] Engn Res Ctr Intelligent Human Hlth Situat Awarene, Jiaxing 314001, Zhejiang, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Federated learning; differential privacy; adaptive noise;
D O I
10.1109/TIFS.2023.3318944
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning (FL) enables multiple distributed clients to collaboratively train a model with owned datasets. To avoid the potential privacy threat in FL, researchers propose the DP-FL strategy, which utilizes differential privacy (DP) to add elaborate noise to the exchanged parameters to hide privacy information. DP-FL guarantees the privacy of FL at the cost of model performance degradation. To balance the trade-off between model accuracy and security, we propose a differentially private federated learning scheme with an adaptive noise mechanism. This is challenging, as the distributed nature of FL makes it difficult to appropriately estimate sensitivity, where sensitivity is a concept in DP that determines the scale of noise. To resolve this, we design a generic method for sensitivity estimates based on local and global historical information. We also provide instances on four commonly used optimizers to verify its effectiveness. The experiments on MNIST, FMNIST and CIFAR-10 convincingly prove that our proposed scheme achieves higher accuracy while keeping high-level privacy protection compared to prior works.
引用
收藏
页码:74 / 87
页数:14
相关论文
共 50 条
  • [21] Local differentially private federated learning with homomorphic encryption
    Jianzhe Zhao
    Chenxi Huang
    Wenji Wang
    Rulin Xie
    Rongrong Dong
    Stan Matwin
    The Journal of Supercomputing, 2023, 79 : 19365 - 19395
  • [22] FLAME: Differentially Private Federated Learning in the Shuffle Model
    Liu, Ruixuan
    Cao, Yang
    Chen, Hong
    Guo, Ruoyang
    Yoshikawa, Masatoshi
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8688 - 8696
  • [23] Differentially Private Federated Learning with Heterogeneous Group Privacy
    Jiang, Mingna
    Wei, Linna
    Cai, Guoyue
    Wu, Xuangou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 143 - 150
  • [24] DPAUC: Differentially Private AUC Computation in Federated Learning
    Sun, Jiankai
    Yang, Xin
    Yao, Yuanshun
    Xie, Junyuan
    Wu, Di
    Wang, Chong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 15170 - 15178
  • [25] FLDS: differentially private federated learning with double shufflers
    Qi, Qingqiang
    Yang, Xingye
    Hu, Chengyu
    Tang, Peng
    Su, Zhiyuan
    Guo, Shanqing
    COMPUTER JOURNAL, 2024,
  • [26] Distributionally Robust Federated Learning for Differentially Private Data
    Shi, Siping
    Hu, Chuang
    Wang, Dan
    Zhu, Yifei
    Han, Zhu
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 842 - 852
  • [27] Evaluating the Impact of Mobility on Differentially Private Federated Learning
    Kim, Eun-ji
    Lee, Eun-Kyu
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [28] Differentially Private Federated Learning with Local Regularization and Sparsification
    Cheng, Anda
    Wang, Peisong
    Zhang, Xi Sheryl
    Cheng, Jian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10112 - 10121
  • [29] Differentially Private Federated Learning for Multitask Objective Recognition
    Xie, Renyou
    Li, Chaojie
    Zhou, Xiaojun
    Chen, Hongyang
    Dong, Zhaoyang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (05) : 7269 - 7281
  • [30] Make Landscape Flatter in Differentially Private Federated Learning
    Shi, Yifan
    Liu, Yingqi
    Wei, Kang
    Shen, Li
    Wang, Xueqian
    Tao, Dacheng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24552 - 24562