Accelerated Engineering of Optimized Functional Composite Hydrogels via High-Throughput Experimentation

被引:3
|
作者
Liu, Yang [1 ,2 ]
Zhang, Junru [1 ]
Zhang, Yujing [3 ]
Yoon, Hu Young [2 ,4 ]
Jia, Xiaoting [3 ]
Roman, Maren [2 ,4 ]
Johnson, Blake N. [1 ,2 ,5 ,6 ]
机构
[1] Virginia Tech, Grad Dept Ind & Syst Engn, Blacksburg, VA 24061 USA
[2] Virginia Tech, Macromol Innovat Inst, Blacksburg, VA 24061 USA
[3] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
[4] Virginia Tech, Dept Sustainable Biomat, Blacksburg, VA 24061 USA
[5] Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA
[6] Virginia Tech, Dept Chem Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Materials Genome Initiative; high-throughput characterization; high-throughput synthesis; sensing; soft robotics; MULTI-CHARACTERIZATION; FABRICATION; EVOLUTION; PEDOTPSS; BEHAVIOR; CELLS;
D O I
10.1021/acsami.3c11483
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The Materials Genome Initiative (MGI) seeks to accelerate the discovery and engineering of advanced materials via high-throughput experimentation (HTE), which is a challenging task, given the common trade-off between design for optimal processability vs performance. Here, we report a HTE method based on automated formulation, synthesis, and multiproperty characterization of bulk soft materials in well plate formats that enables accelerated engineering of functional composite hydrogels with optimized properties for processability and performance. The method facilitates rapid high-throughput screening of hydrogel composition-property relations for multiple properties in well plate formats. The feasibility and utility of the method were demonstrated by application to several functional composite hydrogel systems, including alginate/poly(N-isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) dimethacrylate (PEGDMA)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) hydrogels. The HTE method was leveraged to identify formulations of conductive PEGDMA/PEDOT:PSS composite hydrogels for optimized performance and processability in three-dimensional (3D) printing. This work provides an advance in experimental methods based on automated dispensing, mixing, and sensing for the accelerated engineering of soft functional materials.
引用
收藏
页码:52908 / 52920
页数:13
相关论文
共 50 条
  • [31] High-throughput experimentation for the discovery of new hydroconversion catalysts
    Mota, Filipe Marques
    Bouchy, Christophe
    Duchene, Pascal
    Martens, Johan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [32] Model selection and optimal sampling in high-throughput experimentation
    Westerhuis, JA
    Boelens, HFM
    Iron, D
    Rothenberg, G
    ANALYTICAL CHEMISTRY, 2004, 76 (11) : 3171 - 3178
  • [33] On-line data management for high-throughput experimentation
    Lippmaa, Mikk
    Meguro, Shinya
    Ohnishi, Tsuyoshi
    Koinuma, Hideomi
    Takeuchi, Ichiro
    COMBINATORIAL METHODS AND INFORMATICS IN MATERIALS SCIENCE, 2006, 894 : 321 - +
  • [34] Microgradient-Heaters As Tools for High-Throughput Experimentation
    Meyer, Robert
    Hamann, Sven
    Ehmann, Michael
    Thienhaus, Sigurd
    Jaeger, Stefanie
    Thiede, Tobias
    Devi, Anjana
    Fischer, Roland A.
    Ludwig, Alfred
    ACS COMBINATORIAL SCIENCE, 2012, 14 (10) : 531 - 536
  • [35] High-Throughput Experimentation in Electrochemistry for Alkaline Water Electrolysis
    Dessel, Inka
    Dogan, Deniz
    Eichel, Ruediger-Albert
    Hecker, Burkhard
    Hofmann, Christian
    Huber, Florian
    Jakob, Asha
    Kost, Hans-Joachim
    Lob, Patrick
    Mueller, Andreas
    Sahehmahamad, Sarifahnurliza
    Schmidt, Volkmar M.
    Schneider, Fabian
    Tempel, Hermann
    Wasserschaff, Guido
    Ziogas, Athanassios
    CHEMIE INGENIEUR TECHNIK, 2024, 96 (06) : 774 - 780
  • [36] Probing the chemical ‘reactome’ with high-throughput experimentation data
    Emma King-Smith
    Simon Berritt
    Louise Bernier
    Xinjun Hou
    Jacquelyn L. Klug-McLeod
    Jason Mustakis
    Neal W. Sach
    Joseph W. Tucker
    Qingyi Yang
    Roger M. Howard
    Alpha A. Lee
    Nature Chemistry, 2024, 16 : 633 - 643
  • [37] The Implementation and Impact of Chemical High-Throughput Experimentation at AstraZeneca
    Douglas, James J.
    Campbell, Andrew D.
    Buttar, David
    Fairley, Gary
    Johansson, Magnus J.
    Mcintyre, Allyson C.
    Metrano, Anthony J.
    Morales, Richard S.
    Munday, Rachel H.
    Nguyen, Thanh V. Q.
    Staniland, Samantha
    Tavanti, Michele
    Weis, Erik
    Yates, Simon D.
    Zhang, Zirong
    ACS CATALYSIS, 2025, 15 (07): : 5229 - 5256
  • [38] HIGH THROUGHPUT AND HIGH OUTPUT EXPERIMENTATION FOR STANDARDIZED AND ACCELERATED COATINGS DEVELOPMENT
    Schnyder, Annie
    Perez, Alejandro
    WATERBORNE SYMPOSIUM: PROCEEDINGS OF THE THIRTY-NINTH ANNUAL INTERNATIONAL WATERBORNE, HIGH-SOLIDS, AND POWDER COATINGS SYMPOSIUM, 2012, : 573 - 576
  • [39] Diastereoselective Reductive Etherification Via High-Throughput Experimentation: Access to Pharmaceutically Relevant Alkyl Ethers
    Fu, Jiantao
    Vaughn, Zoe
    Nolting, Andrew F.
    Gao, Qi
    Yang, Dexi
    Schuster, Christopher H.
    Kalyani, Dipannita
    JOURNAL OF ORGANIC CHEMISTRY, 2023, 88 (19): : 13454 - 13465
  • [40] Acquiring and transferring comprehensive catalyst knowledge through integrated high-throughput experimentation and automatic feature engineering
    Fujiwara, Aya
    Nakanowatari, Sunao
    Cho, Yohei
    Taniike, Toshiaki
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2025, 26 (01)