Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI

被引:13
|
作者
Yang, Xiuqi [1 ]
Fan, Xiaohong [2 ]
Lin, Shanyue [3 ]
Zhou, Yingjun [1 ]
Liu, Haibo [1 ]
Wang, Xuefei [4 ]
Zuo, Zhichao [2 ,5 ]
Zeng, Ying [1 ,6 ]
机构
[1] Xiangtan Cent Hosp, Dept Radiol, Xiangtan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan, Peoples R China
[3] Guilin Med Univ, Affiliated Hosp, Dept Radiol, Guilin, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Breast Surg, Beijing, Peoples R China
[5] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[6] Xiangtan Cent Hosp, Dept Radiol, Xiangtan 411000, Hunan, Peoples R China
关键词
breast cancer; lymphovascular invasion; magnetic resonance imaging; MRI morphological features; Radiomics; deep learning; PERITUMORAL EDEMA; PREDICTION; SYSTEM;
D O I
10.1002/jmri.29060
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Assessment of lymphovascular invasion (LVI) in breast cancer (BC) primarily relies on preoperative needle biopsy. There is an urgent need to develop a non-invasive assessment method.Purpose: To develop an effective model to assess the LVI status in patients with BC using magnetic resonance imaging morphological features (MRI-MF), Radiomics, and deep learning (DL) approaches based on dynamic contrast-enhanced MRI (DCE-MRI).Study Type: Cross-sectional retrospective cohort study.Population: The study included 206 BC patients, with 136 in the training set [97 LVI(-) and 39 LVI(+) cases; median age: 51.5 years] and 70 in the test set [52 LVI(-) and 18 LVI(+) cases; median age: 48 years].Field Strength/Sequence: 1.5 T/T1-weighted images, fat-suppressed T2-weighted images, diffusion-weighted imaging (DWI), and DCE-MRI.Assessment: The MRI-MF model was developed with conventional MR features using logistic analyses. The Radiomic feature extraction process involved collecting data from categorized DCE-MRI datasets, specifically the first and second post-contrast images (A1 and A2). Next, a DL model was implemented to determine LVI. Finally, we established a joint diagnosis model by combining the MRI-MF, Radiomics, and DL approaches.Statistical Tests: Diagnostic performance was compared using receiver operating characteristic curve analysis, confusion matrix, and decision curve analysis.Results: Rim sign and peritumoral edema features were used to develop the MRI-MF model, while six Radiomics signature from the A1 and A2 images were used for the Radiomics model. The joint model (MRI-MF + Radiomics + DL models) achieved the highest accuracy (area under the curve [AUC] = 0.857), being significantly superior to the MRI-MF (AUC = 0.724), Radiomics (AUC = 0.736), or DL (AUC = 0.740) model. Furthermore, it also outperformed the pairwise combination models: Radiomics + MRI-MF (AUC = 0.796), DL + MRI-MF (AUC = 0.796), or DL + Radiomics (AUC = 0.826).Data Conclusion: The joint model incorporating MRI-MF, Radiomics, and DL approaches can effectively determine the LVI status in patients with BC before surgery.
引用
收藏
页码:2238 / 2249
页数:12
相关论文
共 50 条
  • [21] Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer
    Turnbull, Lindsay W.
    NMR IN BIOMEDICINE, 2009, 22 (01) : 28 - 39
  • [22] Comparison of Ultrafast Dynamic Contrast-Enhanced (DCE) MRI with Conventional DCE MRI in the Morphological Assessment of Malignant Breast Lesions
    Ohashi, Akane
    Kataoka, Masako
    Iima, Mami
    Honda, Maya
    Ota, Rie
    Urushibata, Yuta
    Nickel, Marcel Dominik
    Toi, Masakazu
    Zackrisson, Sophia
    Nakamoto, Yuji
    DIAGNOSTICS, 2023, 13 (06)
  • [23] Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer
    Deling Song
    Fei Yang
    Yujiao Zhang
    Yazhe Guo
    Yingwu Qu
    Xiaochen Zhang
    Yuexiang Zhu
    Shujun Cui
    Cancer Imaging, 22
  • [24] Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer
    Song, Deling
    Yang, Fei
    Zhang, Yujiao
    Guo, Yazhe
    Qu, Yingwu
    Zhang, Xiaochen
    Zhu, Yuexiang
    Cui, Shujun
    CANCER IMAGING, 2022, 22 (01)
  • [25] Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI
    Yoshida, Kotaro
    Kawashima, Hiroko
    Kannon, Takayuki
    Tajima, Atsushi
    Ohno, Naoki
    Terada, Kanako
    Takamatsu, Atsushi
    Adachi, Hayato
    Ohno, Masako
    Miyati, Tosiaki
    Ishikawa, Satoko
    Ikeda, Hiroko
    Gabata, Toshifumi
    MAGNETIC RESONANCE IMAGING, 2022, 92 : 19 - 25
  • [26] Radiomics Model for Evaluating the Level of Tumor-Infiltrating Lymphocytes in Breast Cancer Based on Dynamic Contrast-Enhanced MRI
    Xu, Nina
    Zhou, Jiejie
    He, Xiaxia
    Ye, Shuxin
    Miao, Haiwei
    Liu, Huiru
    Chen, Zhongwei
    Zhao, Youfan
    Pan, Zhifang
    Wang, Meihao
    CLINICAL BREAST CANCER, 2021, 21 (05) : 440 - +
  • [27] A Radiomics Model for Preoperative Predicting Sentinel Lymph Node Metastasis in Breast Cancer Based on Dynamic Contrast-Enhanced MRI
    Ma, Mingming
    Jiang, Yuan
    Qin, Naishan
    Zhang, Xiaodong
    Zhang, Yaofeng
    Wang, Xiangpeng
    Wang, Xiaoying
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [28] Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer
    Xu, Hao
    Liu, Jieke
    Chen, Zhe
    Wang, Chunhua
    Liu, Yuanyuan
    Wang, Min
    Zhou, Peng
    Luo, Hongbing
    Ren, Jing
    EUROPEAN RADIOLOGY, 2022, 32 (07) : 4845 - 4856
  • [29] Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer
    Hao Xu
    Jieke Liu
    Zhe Chen
    Chunhua Wang
    Yuanyuan Liu
    Min Wang
    Peng Zhou
    Hongbing Luo
    Jing Ren
    European Radiology, 2022, 32 : 4845 - 4856
  • [30] MRI-Based Radiomics for Preoperative Prediction of Lymphovascular Invasion in Patients With Invasive Breast Cancer
    Nijiati, Mayidili
    Aihaiti, Diliaremu
    Huojia, Aisikaerjiang
    Abulizi, Abudukeyoumujiang
    Mutailifu, Sailidan
    Rouzi, Nueramina
    Dai, Guozhao
    Maimaiti, Patiman
    FRONTIERS IN ONCOLOGY, 2022, 12