A systematic investigation into the effect of roughness on self-propelled swimming plates

被引:2
|
作者
Massey, J. M. O. [1 ,2 ]
Ganapathisubramani, B. [1 ]
Weymouth, G. D. [1 ,2 ]
机构
[1] Univ Southampton, Fac Engn & Phys Sci, Southampton SO17 1BJ, England
[2] Delft Univ Technol, Fac Mech Maritime & Mat Engn, NL-2628 CN Delft, Netherlands
关键词
swimming/flying; vortex dynamics; CARTESIAN-GRID SIMULATIONS; SHARK SKIN; SECONDARY CURRENTS; SEPARATION CONTROL; DRAG REDUCTION; TURBULENT; BODY; FLOW; HYDRODYNAMICS; PERFORMANCE;
D O I
10.1017/jfm.2023.703
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study examines the effects of surface topography on the flow and performance of a self-propelled swimming (SPS) body. We consider a thin flat plate with an egg-carton roughness texture undergoing prescribed undulatory swimming kinematics at Strouhal number 0.3 and tail amplitude to length ratio 0.1; we use plate Reynolds numbers Re = 6, 12 and 24 x 10(3), and focus on 12 000. As the roughness wavelength is decreased, we find that the undulation wave speed must be increased to overcome the additional drag from the roughness and maintain SPS. Correspondingly, the extra wave speed raises the power required to maintain SPS, making the swimmer less efficient. To decouple the roughness and the kinematics, we compare the rough plates to equivalent smooth cases by matching the kinematic conditions. We find that all but the longest roughness wavelengths reduce the required swimming power and the unsteady amplitude of the forces when compared to a smooth plate undergoing identical kinematics. Additionally, roughness can enhance flow enstrophy by up to 116% compared to the smooth cases without a corresponding spike in forces; this suggests that the increased mixing is not due to increased vorticity production at the wall. Instead, the enstrophy is found to peak strongly when the roughness wavelength is approximately twice the boundary layer thickness over the Re range, indicating the roughness induces large-scale secondary flow structures that extend to the edge of the boundary layer. This study reveals the nonlinear interaction between roughness and kinematics beyond a simple increase or decrease in drag, illustrating that roughness studies on static shapes do not transfer directly to unsteady swimmers.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Towards a miniature self-propelled jellyfish-like swimming robot
    Yu, Junzhi
    Xiao, Jundong
    Li, Xiangbin
    Wang, Weibing
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2016, 13 : 1 - 9
  • [32] Hydrodynamic Interaction of Two Self-Propelled Fish Swimming in a Tandem Arrangement
    Yang, Dewu
    Wu, Jie
    FLUIDS, 2022, 7 (06)
  • [33] Self-propelled swimming of a flexible plunging foil near a solid wall
    Dai, Longzhen
    He, Guowei
    Zhang, Xing
    BIOINSPIRATION & BIOMIMETICS, 2016, 11 (04)
  • [34] Investigation of ground pressure on self-propelled forage harvesters
    Gottlober, D
    AGRICULTURAL ENGINEERING 1997, 1997, 1356 : 291 - 298
  • [35] Self-Propelled Nanotools
    Solovev, Alexander A.
    Xi, Wang
    Gracias, David H.
    Harazim, Stefan M.
    Deneke, Christoph
    Sanchez, Samuel
    Schmidt, Oliver G.
    ACS NANO, 2012, 6 (02) : 1751 - 1756
  • [36] Self-propelled droplets
    Luigi Martiradonna
    Nature Materials, 2015, 14 : 463 - 463
  • [37] Self-propelled boom
    不详
    GAS ENGINEERING & MANAGEMENT, 1998, 38 (02): : 27 - 27
  • [38] Self-propelled fluids
    Canter, Neil
    TRIBOLOGY & LUBRICATION TECHNOLOGY, 2017, 73 (07) : 10 - 11
  • [39] Self-Propelled Vehicles
    不详
    ANNALS OF THE AMERICAN ACADEMY OF POLITICAL AND SOCIAL SCIENCE, 1907, 30 (01): : 161 - 161
  • [40] Self-propelled droplets
    Ralf Seemann
    Jean-Baptiste Fleury
    Corinna C. Maass
    The European Physical Journal Special Topics, 2016, 225 : 2227 - 2240