Three -dimensional spatial point computation in fringe projection profilometry

被引:13
|
作者
Juarez-Salazar, Rigoberto [1 ]
Rodriguez-Reveles, Gustavo A. [2 ]
Esquivel-Hernandez, Sofia [2 ]
Diaz-Ramirez, Victor H. [2 ]
机构
[1] CONACYT, Inst Politecn Nacl, CITEDI, Ave Inst Politecn Nacl 1310, Tijuana 22435, BC, Mexico
[2] CITEDI, Inst Politecn Nacl, Ave Inst Politecn Nacl 1310, Tijuana 22435, BC, Mexico
关键词
Triangulation; Phase-to-coordinate conversion; Fringe projection profilometry; Three-dimensional surface imaging; Multi-device system; STRUCTURED LIGHT SYSTEM; SHAPE MEASUREMENT; CALIBRATION METHOD; SURFACE;
D O I
10.1016/j.optlaseng.2023.107482
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The demodulated phase in fringe projection profilometry (FPP) provides information about the ( x, y, z ) -coordinates of points of the observed object. However, the phase-to-coordinate conversion employing multiple cameras and projectors with different imaging models is not straightforward. This paper presents the following two contributions. First, a theoretical framework to investigate the triangulation problem in FPP is established. Seven representative triangulation methods commonly used in FPP are reviewed. Second, a generalized triangu-lation method is proposed for single-axis fringe projection supporting multiple cameras and projectors with lens distortion. The performance of the eight investigated triangulation methods is evaluated in terms of noise robust-ness and computation time by computer simulations and an experimental fringe projection optical setup. The results demonstrate that the mean dispersion approach yields the best performance, but vertical and horizontal fringes must be projected, while the new method is the most appropriate for single-axis fringe projection using multiple devices with lens distortion.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Improved geometrical model of fringe projection profilometry
    Huang, Zhengrong
    Xi, Jiangtao
    Yu, Yanguang
    Guo, Qinghua
    Song, Limei
    OPTICS EXPRESS, 2014, 22 (26): : 32220 - 32232
  • [42] Modeling the measurement precision of Fringe Projection Profilometry
    Shenzhen Lv
    Qian Kemao
    Light: Science & Applications, 12
  • [43] Periodic Light Disturbance in Fringe Projection Profilometry
    Xiao Yipeng
    Shi Chaoxia
    Da Feipeng
    ACTA OPTICA SINICA, 2020, 40 (15)
  • [44] Phase Unwrapping in Fast Fringe Projection Profilometry
    Wang, Haixia
    Peng, Rou
    Yang, Xicheng
    DIGITAL OPTICAL TECHNOLOGIES 2017, 2017, 10335
  • [45] Wrap reduction algorithm for fringe projection profilometry
    Arevalillo-Herraez, Miguel
    Segura-Garcia, Jaume
    Arnau-Gonzalez, Pablo
    Katsigiannis, Stamos
    OPTICS AND LASERS IN ENGINEERING, 2022, 158
  • [46] Flexible Calibration for Digital Fringe Projection Profilometry
    Xiao, Yi
    Liu, Jiachen
    Zhong, Hongmei
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 1855 - 1860
  • [47] Colored Ronchi pattern for fringe projection profilometry
    Cabanilla, Jayson P.
    Hermosa, Nathaniel
    OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS VI, 2019, 11189
  • [48] Gamma correction for digital fringe projection profilometry
    Guo, HW
    He, HT
    Chen, M
    APPLIED OPTICS, 2004, 43 (14) : 2906 - 2914
  • [49] Active projection nonlinear ? correction method for fringe projection profilometry
    Wang, L. I. N.
    Zhang, Y. U. E. T. O. N. G.
    Yi, L. I. N. A.
    Hao, X. I. N.
    Wang, M. E. I. Y. I.
    Wang, X. I. A. N. G. J. U. N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (11) : 1983 - 1991
  • [50] A frequency encoding method for fringe projection profilometry
    Guo, HW
    Chen, MY
    He, HT
    THIRD INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS AND THIRD CONFERENCE OF THE ASIAN-COMMITTEE-ON-EXPERIMENTAL-MECHANICS, PTS 1AND 2, 2005, 5852 : 908 - 913