Proximity superconductivity in atom-by-atom crafted quantum dots

被引:14
|
作者
Schneider, Lucas [1 ]
Ton, Khai That [1 ]
Ioannidis, Ioannis [2 ,3 ]
Neuhaus-Steinmetz, Jannis [1 ]
Posske, Thore [2 ,3 ]
Wiesendanger, Roland [1 ]
Wiebe, Jens [1 ]
机构
[1] Univ Hamburg, Dept Phys, Hamburg, Germany
[2] Univ Hamburg, I Inst Theoret Phys, Hamburg, Germany
[3] Hamburg Ctr Ultrafast Imaging, Hamburg, Germany
关键词
SURFACE; STATES; CONFINEMENT; CORRALS; AG;
D O I
10.1038/s41586-023-06312-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gapless materials in electronic contact with superconductors acquire proximity-induced superconductivity in a region near the interface(1,2). Numerous proposals build on this addition of electron pairing to originally non-superconducting systems and predict intriguing phases of matter, including topological(3-7), odd-frequency(8), nodal-point(9) or Fulde-Ferrell-Larkin-Ovchinnikov(10) superconductivity. Here we investigate the most miniature example of the proximity effect on only a single spin-degenerate quantum level of a surface state confined in a quantum corral(11) on a superconducting substrate, built atom by atom by a scanning tunnelling microscope. Whenever an eigenmode of the corral is pitched close to the Fermi energy by adjusting the size of the corral, a pair of particle-hole symmetric states enters the gap of the superconductor. We identify these as spin-degenerate Andreev bound states theoretically predicted 50 years ago by Machida and Shibata(12), which had-so far-eluded detection by tunnel spectroscopy but were recently shown to be relevant for transmon qubit devices(13,14). We further find that the observed anticrossings of the in-gap states are a measure of proximity-induced pairing in the eigenmodes of the quantum corral. Our results have direct consequences on the interpretation of impurity-induced in-gap states in superconductors, corroborate concepts to induce superconductivity into surface states and further pave the way towards superconducting artificial lattices.
引用
收藏
页码:60 / +
页数:17
相关论文
共 50 条
  • [41] Atom-by-Atom Tuning of an Electrostatic Potassium-Channel Modulator
    Ejneby, Malin Silvera
    Wu, Xiongyu
    Ottosson, Nina E.
    Munger, E. Peter
    Lundstrom, Ingemar
    Konradsson, Peter
    Elinder, Fredrik
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 375A - 375A
  • [42] New capabilities for 'colouring in' the chemistry of crystal defects atom-by-atom
    Haigh, Sarah J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : 521 - 523
  • [43] Atom-by-atom fabrication of metal clusters for efficient selective hydrogenation
    Yalin Guo
    Botao Qiao
    Science China(Chemistry), 2022, 65 (02) : 202 - 203
  • [44] QUANTUM DOTS One atom at a time
    Weitering, Hanno H.
    NATURE NANOTECHNOLOGY, 2014, 9 (07) : 499 - 500
  • [45] Atom-by-Atom Dehalogenation of a Porphyrin Molecule Adsorbed on Ag(111)
    Kreuch, T.
    Meierott, S.
    Neel, N.
    Beenken, W. J. D.
    Kroeger, J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (51): : 30162 - 30169
  • [46] Electrochemical atom-by-atom growth of PbS by modified ECALE method
    Öznülüer, T
    Erdogan, I
    Sisman, I
    Demir, U
    CHEMISTRY OF MATERIALS, 2005, 17 (05) : 935 - 937
  • [47] Atom-by-atom fabrication of metal clusters for efficient selective hydrogenation
    Guo, Yalin
    Qiao, Botao
    SCIENCE CHINA-CHEMISTRY, 2022, 65 (02) : 202 - 203
  • [48] Atom-by-atom fabrication of metal clusters for efficient selective hydrogenation
    Yalin Guo
    Botao Qiao
    Science China Chemistry, 2022, 65 : 202 - 203
  • [49] Atom-by-Atom Analysis of Semiconductor Nanowires with Parts Per Million Sensitivity
    Koelling, S.
    Li, A.
    Cavalli, A.
    Assali, S.
    Car, D.
    Gazibegovic, S.
    Bakkers, E. P. A. M.
    Koenraad, P. M.
    NANO LETTERS, 2017, 17 (02) : 599 - 605
  • [50] Direct Atom-by-Atom Chemical Identification of Nanostructures and Defects of Topological Insulators
    Jiang, Ying
    Wang, Yong
    Sagendorf, Jared
    West, Damien
    Kou, Xufeng
    Wei, Xiao
    He, Liang
    Wang, Kang L.
    Zhang, Shengbai
    Zhang, Ze
    NANO LETTERS, 2013, 13 (06) : 2851 - 2856