Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions

被引:5
|
作者
Ma, Zhimin [1 ]
Ma, Lijing [1 ]
Zhou, Junhui [1 ]
机构
[1] Peking Univ, Inst Adv Agr Sci, Weifang 261000, Shandong, Peoples R China
来源
MOLECULAR HORTICULTURE | 2023年 / 3卷 / 01期
关键词
CRISPR/Cas; Plant development; Plant immunity; Genome editing; Fruit crops; BETA-CAROTENE; REGULATES CHLOROPHYLL; GENE-EXPRESSION; TOMATO; EFFICIENT; DNA; BASE; TRANSFORMATION; RESISTANCE; PLANTS;
D O I
10.1186/s43897-023-00049-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing
    Sinclair, Frazer
    Begum, Anjuman A.
    Dai, Charles C.
    Toth, Istvan
    Moyle, Peter M.
    DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2023, 13 (5) : 1500 - 1519
  • [32] Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing
    Frazer Sinclair
    Anjuman A. Begum
    Charles C. Dai
    Istvan Toth
    Peter M. Moyle
    Drug Delivery and Translational Research, 2023, 13 : 1500 - 1519
  • [33] Advances in therapeutic CRISPR/Cas9 genome editing
    Schwank, G.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1053 - 1053
  • [34] Advances in therapeutic CRISPR/Cas9 genome editing
    Savic, Natasa
    Schwank, Gerald
    TRANSLATIONAL RESEARCH, 2016, 168 : 15 - 21
  • [35] Recent Advances in CRISPR/Cas9-Based Genome Editing Tools for Cardiac Diseases
    Schreurs, Juliet
    Sacchetto, Claudia
    Colpaert, Robin M. W.
    Vitiello, Libero
    Rampazzo, Alessandra
    Calore, Martina
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (20)
  • [36] Recent Advances in CRISPR-Cas9 Genome Editing Technology for Biological and Biomedical Investigations
    Singh, Vijai
    Gohil, Nisarg
    Ramirez Garcia, Robert
    Braddick, Darren
    Fofie, Christian Kuete
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2018, 119 (01) : 81 - 94
  • [37] Recent advances in the CRISPR genome editing tool set
    Moon, Su Bin
    Kim, Do Yon
    Ko, Jeong-Heon
    Kim, Yong-Sam
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2019, 51 (11): : 1 - 11
  • [38] Correction to: Recent advances in CRISPR technologies for genome editing
    Myeonghoon Song
    Taeyoung Koo
    Archives of Pharmacal Research, 2021, 44 : 836 - 838
  • [39] Recent advances in the CRISPR genome editing tool set
    Su Bin Moon
    Do Yon Kim
    Jeong-Heon Ko
    Yong-Sam Kim
    Experimental & Molecular Medicine, 2019, 51 : 1 - 11
  • [40] CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances
    Soda, Neelam
    Verma, Lokesh
    Giri, Jitender
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 131 : 2 - 11