Experimental investigation on uniaxial cyclic plasticity of cast AZ91 magnesium alloy

被引:9
|
作者
Lei, Yu [1 ]
Wang, Ziyi [1 ]
Kang, Guozheng [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech & Aerosp Engn, Appl Mech & Struct Safety Key Lab Sichuan Prov, Chengdu 610031, Peoples R China
关键词
Cast magnesium alloy; Ratchetting; Twinning/detwinning; Stress level; Stress rate; FATIGUE FAILURE; DEFORMATION-BEHAVIOR; LOADING MODE; EVOLUTION; DEPENDENCE; FREQUENCY;
D O I
10.1016/j.jma.2021.12.001
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The uniaxial cyclic plasticity of cast AZ91 magnesium (Mg) alloy was investigated by conducting a series of cyclic straining and stressing tests at room temperature, and a unique cyclic plasticity (especially for ratchetting) and its physical nature were revealed. The experimental results demonstrate that the cast AZ91 Mg alloy behaviors tension-compression symmetry, because the dislocation slipping and twinning occur during both the tensile and compressive deformations; although the cast AZ91 alloy presents a certain pseudo-elastic behavior during unloading due to the detwinning, there is no obvious S-shaped asymmetric hysteresis loop like that of wrought Mg alloy in the cyclic tensile-compressive tests, and an obvious cyclic hardening is observed; moreover, the ratchetting of the cast AZ91 alloy presented in the cyclic stressing tests depends remarkably on the prescribed mean stress and stress amplitude, but slightly changes with the stress rate, and the evolution of responding peak/valley strain greatly differs from that of wrought Mg alloys and stainless steels. This work provides rich experimental data for establishing the constitutive model of cast Mg alloys. (c) 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University
引用
下载
收藏
页码:3255 / 3271
页数:17
相关论文
共 50 条
  • [41] DENDRITIC SOLIDIFICATION OF MAGNESIUM ALLOY AZ91
    PETTERSEN, K
    JOURNAL OF METALS, 1988, 40 (07): : A15 - A15
  • [42] Creep Behavior of AZ91 Magnesium Alloy
    Srinivasan, A.
    Ajithkumar, K. K.
    Swaminathan, J.
    Pillai, U. T. S.
    Pai, B. C.
    6TH INTERNATIONAL CONFERENCE ON CREEP, FATIGUE AND CREEP-FATIGUE INTERACTION, 2013, 55 : 109 - 113
  • [43] Corrosion Behavior of AZ91 Magnesium Alloy
    Yim, Chang Dong
    Kim, Young Min
    Park, Sung Hyuk
    You, Bong Sun
    KOREAN JOURNAL OF METALS AND MATERIALS, 2012, 50 (09): : 619 - 627
  • [44] Stress relaxation in an AZ91 magnesium alloy
    Trojanová, Z
    Lukác, P
    Gabor, P
    Drozd, Z
    Máthis, K
    KOVOVE MATERIALY-METALLIC MATERIALS, 2001, 39 (06): : 368 - 378
  • [45] Surface modification of AZ91 magnesium alloy
    Luan, Benli
    Gray, Joy
    Yang, Lianxi
    Cheong, Woo-Jae
    Shoesmith, David
    2006 BIMW: 2006 BEIJING INTERNATIONAL MATERIALS WEEK, PTS 1-4: MAGNESIUM, 2007, 546-549 : 513 - +
  • [46] Seffated flow in magnesium alloy AZ91
    Corby, C
    Cáceres, CH
    Lukac, P
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 : 22 - 24
  • [47] Fabrication of AZ91 magnesium alloy foam
    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110023, China
    不详
    Zhuzao, 2007, 3 (242-244):
  • [48] Fracture behavior of AZ91 magnesium alloy
    Lü, YZ
    Wang, QD
    Ding, WJ
    Zeng, XQ
    Zhu, YP
    MATERIALS LETTERS, 2000, 44 (05) : 265 - 268
  • [49] Surface modification of the AZ91 magnesium alloy
    Strzelecka, M.
    Iwaszko, J.
    Malik, M.
    Tomczynski, S.
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2015, 15 (04) : 854 - 861
  • [50] Study on the EPC AZ91 magnesium alloy
    Liu, Z.L., 2001, Harbin Institute of Technology (09):