A MULTIPLICITY RESULTS TO A p - q LAPLACIAN SYSTEM WITH A CONCAVE AND SINGULAR NONLINEARITIES

被引:0
|
作者
Choudhuri, Debajyoti [1 ]
Kratou, Mouna [2 ]
Saoudi, Kamel [2 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela, India
[2] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, POB 1982, Dammam 31441, Saudi Arabia
来源
FIXED POINT THEORY | 2023年 / 24卷 / 01期
关键词
Nehari manifold; Lusternik-Schnirelman category; singularity; multi-plicity; LINEAR ELLIPTIC SYSTEM; POSITIVE SOLUTIONS; EIGENVALUE PROBLEM; EQUATION; EXISTENCE;
D O I
10.24193/fpt-ro.2023.1.06
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of multiple nontrivial positive weak solutions to the following system of problems. - Delta pu-Delta qu= lambda f(x)|u|r-2u +nu 1 -alpha 2 -alpha - beta h(x)|u|-alpha|v|1-beta in omega, - Delta pv-Delta qv= mu g(x)|v|r-2v +nu 1 -beta 2 -alpha -beta h(x)|u|1-alpha|v|-beta in omega, u, v > 0 in omega, u = v = 0 on partial differential omega where 0 < alpha < 1, 0< beta <1, 2- alpha -beta < q < N(p-1) N-p < p < r < p*, with p* = NpN-p. We will guarantee the existence of a solution in the Nehari manifold. Further by using the Lusternik-Schnirelman category we will prove the existence of at least cat(omega) + 1 number of solutions.
引用
收藏
页码:127 / 154
页数:28
相关论文
共 50 条