Bayesian Optimal Experiment Design for Sloppy Systems br

被引:4
|
作者
Jagadeesan, Prem [1 ,3 ,4 ]
Raman, Karthik [2 ,3 ,4 ]
Tangirala, Arun K. [1 ,3 ,4 ]
机构
[1] Indian Inst Technol IIT Madras, Dept Chem Engn, Chennai, India
[2] IIT Madras, Bhupat & Jyoti Mehta Sch, Dept Biotechnol, Biosci, Chennai, India
[3] IIT Madras, Robert Bosch Ctr Data Sci & Artificial Intelligenc, Chennai, India
[4] IIT Madras, Ctr Integrat Biol & Syst Med IBSE, Chennai 600036, India
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 23期
关键词
Bayesian Optimal Experiment Design; Sloppy Models; Bhattacharyya Coefficient;
D O I
10.1016/j.ifacol.2023.01.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In complex dynamical systems, precise and accurate estimation of parameters and quality of predictions depentis on the information contained in the experimental data. Choosing experimental schemes that maximize information contained in the data is known as Optimal Experimental Design (OEL). Fisher Information Matrix and variance-covariance matrix are the central ideas of OED. However, using OED in a class of models known as sloppy models renders the model less predictive, even though the parameters are estimated with substantial precision. This work introduces a new information gain index as an experiment design criterion in the Bayesian framework! The proposed design criterion is based on what is known as the Bhattacharyya coefficient. Our previous studies show that the information gain index indicates a loss of practical identifiability. Further, it is also an indication of sloppy and stiff parameters. Hence, we extend the information index and its interpretation to joint Gaussian distributions; then, using simulations, we demonstrate that the new experiment design criterion selects experiments that minimize prediction and parameter uncertainty in sloppy models.<br />Copyright (c) 2022 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:121 / 126
页数:6
相关论文
共 50 条
  • [31] Guided Bayesian optimal experimental design
    Khodja, M. R.
    Prange, M. D.
    Djikpesse, H. A.
    INVERSE PROBLEMS, 2010, 26 (05)
  • [32] Bayesian optimal design for changepoint problems
    Atherton, Juli
    Charbonneau, Benoit
    Wolfson, David B.
    Joseph, Lawrence
    Zhou, Xiaojie
    Vandal, Alain C.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 495 - 513
  • [33] Variational Bayesian Optimal Experimental Design
    Fostert, Adam
    Jankowiak, Martin
    Bingham, Eli
    Horsfall, Paul
    Teh, Yee Whye
    Rainforth, Tom
    Goodman, Noah
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [34] Bayesian optimal stepped wedge design
    Singh, Satya Prakash
    BIOMETRICAL JOURNAL, 2024, 66 (01)
  • [35] BAYESIAN OPTIMAL STRATIFIED SAMPLING DESIGN
    SANKOH, AJ
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (11) : 3185 - 3196
  • [36] OPTIMAL EXPERIMENT DESIGN FOR LINEAR-SYSTEMS WITH INPUT-OUTPUT CONSTRAINTS
    NG, TS
    GOODWIN, GC
    SODERSTROM, T
    AUTOMATICA, 1977, 13 (06) : 571 - 577
  • [37] The optimal estimation of parameters of models of controlled stochastic systems based on the experiment design
    Denisov, V. I.
    Chubich, V. M.
    Filippova, E. V.
    INTERNATIONAL CONFERENCE: INFORMATION TECHNOLOGIES IN BUSINESS AND INDUSTRY, 2019, 1333
  • [38] Optimal Experiment Design for the Identification of One Module in the Interconnection of Locally Controlled Systems
    Morelli, F.
    Bombois, X.
    Hjalmarsson, H.
    Bako, L.
    Colin, K.
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 363 - 368
  • [39] Numerical methods for parameter estimation and optimal experiment design in chemical reaction systems
    Lohmann, Thomas
    Bock, Hans Georg
    Schloeder, Johannes P.
    Industrial and Engineering Chemistry Research, 1992, 31 (01): : 54 - 57
  • [40] The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems
    White, Andrew
    Tolman, Malachi
    Thames, Howard D.
    Withers, Hubert Rodney
    Mason, Kathy A.
    Transtrum, Mark K.
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (12)