ON THE CARMICHAEL RINGS, CARMICHAEL IDEALS AND CARMICHAEL POLYNOMIALS

被引:0
|
作者
Bae, Sunghan [1 ]
Hu, Su [2 ]
Sha, Min [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 305701, South Korea
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
[3] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
Carmichael number; Carmichael ring; Carmichael ideal; Carmichael polynomial; Dedekind domain; function field; NUMBERS;
D O I
10.4064/cm8601-1-2022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by Carmichael numbers, we say that a finite ring R is a Carmichael ring if a(vertical bar R vertical bar) = a for any a is an element of R. We then call an ideal I of a ring R a Carmichael ideal if R/I is a Carmichael ring, and a Carmichael element of R means it generates a Carmichael ideal. In this paper, we determine the structure of Carmichael rings and prove a generalization of Korselt's criterion for Carmichael ideals in Dedekind domains. We extend several results from the number field case to the function field case. In particular, we study Carmichael elements of polynomial rings over finite fields (called Carmichael polynomials) by generalizing some classical results. For example, we show that there are infinitely many Carmichael polynomials but they have zero density.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Carmichael on propositions and universals
    Alvarado Marambio, Jose Tomas
    ANUARIO FILOSOFICO, 2013, 46 (03): : 617 - 642
  • [22] CARMICHAEL CLEANERS - REPLY
    ECK, K
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1961, 53 (01): : A69 - A69
  • [23] The arithmetic of Carmichael quotients
    Min Sha
    Periodica Mathematica Hungarica, 2015, 71 : 11 - 23
  • [24] TROTSKY - CARMICHAEL,J
    GERSHMAN, C
    COMMENTARY, 1976, 62 (01) : 73 - 75
  • [25] 广义Carmichael数
    朱文余
    孙琦
    周先华
    数学学报, 2005, (06) : 171 - 174
  • [26] Carmichael Meets Chebotarev
    Banks, William D.
    Guloglu, Ahmet M.
    Yeager, Aaron M.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (04): : 695 - 708
  • [27] Carmichael numbers and the sieve
    Banks, William D.
    Freiberg, Tristan
    JOURNAL OF NUMBER THEORY, 2016, 165 : 15 - 29
  • [28] CARMICHAEL,JES - OBITUARY
    DOWNIE, VJ
    BRITISH MEDICAL JOURNAL, 1994, 309 (6958): : 869 - 869
  • [29] DISCUSSION OF CARMICHAEL AME
    BARRON, NS
    VETERINARY RECORD, 1966, 79 (01) : 14 - &
  • [30] DISCUSSION OF CARMICHAEL,JA
    BECK, RP
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 1967, 97 (03) : 304 - &