Lie symmetry analysis for fractional evolution equation with ζ-Riemann-Liouville derivative

被引:0
|
作者
Soares, Junior C. A. [1 ,2 ]
Costa, Felix S. [2 ]
Sousa, J. Vanterler C. [2 ]
机构
[1] Mato Grosso State Univ, Dept Math, Rua A S-N, BR-78390000 Barra Do Bugres, Brazil
[2] DEMATI UEMA, PPGEA UEMA, Dept Math, Aerosp Engn, BR-65054 Sao Luis, MA, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 04期
关键词
Prolongation formula; Invariance condition; zeta-Leibniz-type rule; Fractional equations; Lie group; RULE;
D O I
10.1007/s40314-024-02685-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the application of Lie group theory analysis with zeta-Riemann-Liouville fractional derivative (zeta-RLFD, for short) detailing the construction of infinitesimal prolongation to obtain Lie symmetries. In addition, it addresses the invariance condition without necessarily imposing that the lower limit of the fractional integral is fixed. We find an expression that expands the knowledge regarding the study of exact solutions for fractional differential equations. We apply the Leibniz-type rule for the derivative operator in question to build the prolongation. At last, we calculate the Lie symmetries of the generalized Burgers equation and fractional porous medium equation.
引用
收藏
页数:25
相关论文
共 50 条