Clustering honey samples with unsupervised machine learning methods using FTIR data

被引:1
|
作者
Avcu, Fatih M. [1 ]
机构
[1] Inonu Univ, Dept Informat, TR-44280 Malatya, Turkiye
来源
关键词
Fouirer transform infrared spectrophotometer; hierarchical clustering analysis; machine learning; deep Learning; MULTIVARIATE; ORIGIN;
D O I
10.1590/0001-3765202420230409
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study utilizes Fourier transform infrared (FTIR) data from honey samples to cluster and categorize them based on their spectral characteristics. The aim is to group similar samples together, revealing patterns and aiding in classification. The process begins by determining the number of clusters using the elbow method, resulting in five distinct clusters. Principal Component Analysis (PCA) is then applied to reduce the dataset's dimensionality by capturing its significant variances. Hierarchical Cluster Analysis (HCA) further refines the sample clusters. 20% of the data, representing identified clusters, is randomly selected for testing, while the remainder serves as training data for a deep learning algorithm employing a multilayer perceptron (MLP). Following training, the test data are evaluated, revealing an impressive 96.15% accuracy. Accuracy measures the machine learning model's ability to predict class labels for new data accurately. This approach offers reliable honey sample clustering without necessitating extensive preprocessing. Moreover, its swiftness and cost-effectiveness enhance its practicality. Ultimately, by leveraging FTIR spectral data, this method successfully identifies similarities among honey samples, enabling efficient categorization and demonstrating promise in the field of spectral analysis in food science.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Unsupervised Machine Learning Via Transfer Learning and k-Means Clustering to Classify Materials Image Data
    Cohn, Ryan
    Holm, Elizabeth
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2021, 10 (02) : 231 - 244
  • [32] Unsupervised Machine Learning Via Transfer Learning and k-Means Clustering to Classify Materials Image Data
    Ryan Cohn
    Elizabeth Holm
    Integrating Materials and Manufacturing Innovation, 2021, 10 : 231 - 244
  • [33] Using Unsupervised and Supervised Machine Learning Methods to Correct Offset Anomalies in the GOES-16 Magnetometer Data
    Inceoglu, F.
    Loto'aniu, Paul T. M.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2021, 19 (12):
  • [34] Unsupervised feature selection based extreme learning machine for clustering
    Jichao Chen
    Yijie Zeng
    Yue Li
    Guang-Bin Huang
    NEUROCOMPUTING, 2020, 386 : 198 - 207
  • [35] Classification of Users of a Health Service Provider Using Unsupervised Machine Learning Methods
    Arango-Abella M.D.
    Figueroa-García J.C.
    SN Computer Science, 5 (5)
  • [36] Dynamic switching control of buck converters using unsupervised machine learning methods
    Abegaz, Brook W.
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (12): : 1155 - 1164
  • [37] Ball Bearing Fault Diagnosis Using Supervised and Unsupervised Machine Learning Methods
    Vakharia, V.
    Gupta, V. K.
    Kankar, P. K.
    INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2015, 20 (04): : 244 - 250
  • [38] A Deep Unsupervised Learning Algorithm for Dynamic Data Clustering
    Pantula, Priyanka D.
    Miriyala, Srinivas S.
    Mitra, Kishalay
    2021 SEVENTH INDIAN CONTROL CONFERENCE (ICC), 2021, : 147 - 152
  • [39] TRUNC: A Transfer Learning Unsupervised Network for Data Clustering
    Xavier, Rita
    Peller, John
    de Castro, Leandro Nunes
    IEEE ACCESS, 2025, 13 : 46282 - 46298
  • [40] Network Data Flow Clustering based on Unsupervised Learning
    Lopez-Vizcaino, Manuel
    Dafonte, Carlos
    Novoa, Francisco J.
    Garabato, Daniel
    Alvarez, M. A.
    Fernandez, Diego
    2019 IEEE 18TH INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA), 2019, : 139 - 143