Application of a Neocortex Model to Identify Contextual Anomalies in the Industrial Internet of Things Network Traffic

被引:0
|
作者
Markov, G. A. [1 ]
机构
[1] Jet Infosystems, Moscow 127015, Russia
关键词
hierarchical-temporal memory; artificial intelligence; contextual anomalies; machine learning; neocortex; industrial Internet of Things; network traffic; HTM;
D O I
10.3103/S0146411623080163
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper examines the problem of identifying network anomalies when processing data streams in industrial systems. A network anomaly refers to a malicious signature and the current context: network environment and topology, routing parameters, and node characteristics. As a result of the study, it is proposed to use a neocortex model that supports the memory mechanism to detect network anomalies.
引用
收藏
页码:1018 / 1024
页数:7
相关论文
共 50 条
  • [31] A propagation breakdown management model for the industrial internet of things
    Buetas, Eduardo
    Abad, Ismael
    Cerrada, Jose A.
    Cerrada, Carlos
    COMPUTERS IN INDUSTRY, 2020, 123
  • [32] Hierarchical Computing Network Collaboration Architecture for Industrial Internet of Things
    Luo, Zihui
    Zheng, Xiaolong
    Wang, Bo
    Meng, Qifeng
    Cu, Helei
    Guo, Xiaobing
    Liu, Liang
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 57 - 64
  • [33] Security Implications of Underlying Network Technologies on Industrial Internet of Things
    Butun, Ismail
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2022, 25 (01): : 223 - 229
  • [34] Network traffic model for industrial environment
    Kolbusz, Janusz
    Paszczynski, Stanislaw
    Wilamowski, Bogdan M.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2006, 2 (04) : 213 - 220
  • [35] Network traffic model for industrial environment
    Kolbusz, J
    Paszczynski, S
    Wilamowski, BM
    2005 3RD IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2005, : 406 - 411
  • [36] A Secure Network Model Against Bot Attacks in Edge-Enabled Industrial Internet of Things
    Memos, Vasileios A.
    Psannis, Konstantinos E.
    Lv, Zhihan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (11) : 7998 - 8006
  • [37] Instrument reading recognition by deep learning of capsules network model for digitalization in Industrial Internet of Things
    Li, Dazhou
    Hou, Jingfei
    Gao, Wei
    ENGINEERING REPORTS, 2022, 4 (12)
  • [38] Application of intelligent Internet of Things technology in the security monitoring system of power Internet of Things network
    Lei Song
    Haibo Lan
    Jin Du
    Kai Wang
    Wei Kang
    Discover Internet of Things, 5 (1):
  • [39] APPLICATION OF INDUSTRIAL INTERNET OF THINGS (IIOT) IN THE PACKAGING INDUSTRY IN POLAND
    Paliwoda, Beata
    Gorna, Justyna
    Bieganska, Marta
    Wojcicki, Krzysztof
    LOGFORUM, 2023, 19 (01) : 59 - 73
  • [40] Anomaly traffic detection based on feature fluctuation for secure industrial internet of things
    Yin, Jie
    Zhang, Chuntang
    Xie, Wenwei
    Liang, Guangjun
    Zhang, Lanping
    Gui, Guan
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2023, 16 (04) : 1680 - 1695