Application of a Neocortex Model to Identify Contextual Anomalies in the Industrial Internet of Things Network Traffic

被引:0
|
作者
Markov, G. A. [1 ]
机构
[1] Jet Infosystems, Moscow 127015, Russia
关键词
hierarchical-temporal memory; artificial intelligence; contextual anomalies; machine learning; neocortex; industrial Internet of Things; network traffic; HTM;
D O I
10.3103/S0146411623080163
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper examines the problem of identifying network anomalies when processing data streams in industrial systems. A network anomaly refers to a malicious signature and the current context: network environment and topology, routing parameters, and node characteristics. As a result of the study, it is proposed to use a neocortex model that supports the memory mechanism to detect network anomalies.
引用
收藏
页码:1018 / 1024
页数:7
相关论文
共 50 条
  • [1] Application of a Neocortex Model to Identify Contextual Anomalies in the Industrial Internet of Things Network Traffic
    G. A. Markov
    Automatic Control and Computer Sciences, 2023, 57 : 1018 - 1024
  • [2] A hybrid intelligent model for network selection in the industrial Internet of Things
    Goudarzi S.
    Anisi M.H.
    Abdullah A.H.
    Lloret J.
    Soleymani S.A.
    Hassan W.H.
    Applied Soft Computing Journal, 2019, 74 : 529 - 546
  • [3] Industrial Internet of Things Classification and Analysis Performed on a Model Network
    Kulik, V.
    Kirichek, R.
    Sotnikov, A.
    INTERNET OF THINGS, SMART SPACES, AND NEXT GENERATION NETWORKS AND SYSTEMS, NEW2AN 2019, RUSMART 2019, 2019, 11660 : 548 - 561
  • [4] Spatiotemporal model for Internet traffic anomalies
    Bandara, Vidarshana W.
    Pezeshki, Ali
    Jayasumana, Anura P.
    IET NETWORKS, 2014, 3 (01) : 41 - 53
  • [5] Network Traffic Prediction in Industrial Internet of Things Backbone Networks: A Multitask Learning Mechanism
    Nie, Laisen
    Wang, Xiaojie
    Wang, Shupeng
    Ning, Zhaolong
    Obaidat, Mohammad S.
    Sadoun, Balqies
    Li, Shengtao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (10) : 7123 - 7132
  • [6] Traffic Modeling for Industrial Internet of Things (IIoT) Networks
    Glabowski, Mariusz
    Hanczewski, Slawomir
    Stasiak, Maciej
    Weissenberg, Michal
    Zwierzykowski, Piotr
    Bai, Vito
    IMAGE PROCESSING AND COMMUNICATIONS: TECHNIQUES, ALGORITHMS AND APPLICATIONS, 2020, 1062 : 264 - 271
  • [7] Traffic Optimization Model Based on Regional Road Network Traffic Diversion Technology and Internet of Things
    Ma, Fang
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [8] Network Digital Twin for the Industrial Internet of Things
    Kherbache, Mehdi
    Maimour, Moufida
    Rondeau, Eric
    2022 IEEE 23RD INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS (WOWMOM 2022), 2022, : 573 - 578
  • [9] A Resilient Network Node for the Industrial Internet of Things
    Jaeger, Lukas
    Lorych, Dominik
    Eckel, Michael
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY, ARES 2022, 2022,
  • [10] MESH NETWORK PROTOCOLS FOR THE INDUSTRIAL INTERNET OF THINGS
    Yu, Ross
    MICROWAVE JOURNAL, 2014, 57 (12) : 38 - +