Direct adaptive fractional-order non-singular terminal sliding mode control strategy using extreme learning machine for position control of 5-DOF upper-limb exoskeleton robot systems

被引:4
|
作者
Mirzaee, Morteza [1 ,2 ]
Kazemi, Reza [1 ]
机构
[1] KN Toosi Univ Technol, Fac Mech Engn, Tehran, Iran
[2] KN Toosi Univ Technol, Fac Mech Engn, Unit 3, 11 Parsa Deadend,Keshvari St, Tehran 1664938714, Iran
关键词
Exoskeleton robot; terminal sliding mode control; finite-time control; adaptive control; fractional-order control; extreme learning machine; TRAJECTORY TRACKING CONTROL; FUZZY NEURAL-NETWORK; DESIGN; OBSERVER;
D O I
10.1177/01423312231225605
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an innovative adaptive fractional-order (FO) terminal sliding mode (TSM) controller designed for a 5-degree-of-freedom (5-DOF) upper-limb exoskeleton robot. The primary focus is on addressing the challenges posed by nonlinearities and uncertainties in parameter values. The proposed approach integrates several key elements, including a novel fractional-order non-singular terminal sliding mode (FONSTSM) surface, an exponential reaching law, and the utilization of the extreme learning machine (ELM). This comprehensive strategy guarantees not only finite-time convergence but also robust stability, effectively alleviating the well-known chattering phenomenon. Furthermore, it successfully overcomes the singularity issues typically observed in conventional TSM controllers. The incorporation of the ELM with rectified linear unit (ReLU) activation function enhances robustness by facilitating the estimation of parameters related to the exponential control law. Numerical simulations provide compelling evidence of improved tracking, increased robustness against uncertainties, achievement of finite-time convergence, and notable reductions in control signal oscillations and singularity problems.
引用
收藏
页码:2313 / 2323
页数:11
相关论文
共 27 条
  • [21] Model-free control using time delay estimation and fractional-order nonsingular fast terminal sliding mode for uncertain lower-limb exoskeleton
    Ahmed, Saim
    Wang, Haoping
    Tian, Yang
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (22) : 5273 - 5290
  • [22] A Non-Singular Fast Terminal Sliding Mode Control Based on Third-Order Sliding Mode Observer for a Class of Second-Order Uncertain Nonlinear Systems and its Application to Robot Manipulators
    Van-Cuong Nguyen
    Anh-Tuan Vo
    Kang, Hee-Jun
    IEEE ACCESS, 2020, 8 : 78109 - 78120
  • [23] A chattering-free adaptive second-order non-singular fast terminal sliding mode control scheme for a class of nonlinear uncertain systems
    Zhang, Beibei
    Gao, Shouli
    Yang, Xiao
    Zhao, Dongya
    Zhang, Pengbin
    Zeng, Yupei
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2018, 29 (03) : 255 - 265
  • [24] Model-free finite-time robust control using fractional-order ultra-local model and prescribed performance sliding surface for upper-limb rehabilitation exoskeleton
    He, Dingxin
    Wang, Haoping
    Tian, Yang
    Ma, Xingyu
    ISA TRANSACTIONS, 2024, 147 : 511 - 526
  • [25] Adaptive non-singular second-order terminal sliding mode control for cyber-physical systems subject to actuator cyber-attacks and unwanted disturbances
    Nemati, Abbas
    Peimani, Mansour
    Mobayen, Saleh
    Sayyedfattahi, Sayyedjavad
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (11) : 2963 - 2982
  • [26] Neuro-adaptive non-singular terminal sliding mode control for distributed fixed-time synchronization of higher-order uncertain multi-agent nonlinear systems
    Ullah, Safeer
    Khan, Qudrat
    Zaidi, Monji Mohamed
    Hua, Lyu-Guang
    INFORMATION SCIENCES, 2024, 659
  • [27] Comment on S. Ahmed, H. Wang, and Y. Tian, "Robust adaptive fractional-order terminal sliding mode control for lower-limb exoskeleton," Asian J. Control, vol. 21, no. 1, pp. 1-10 (2019)
    Samaei, Mohammad Hossein
    Ahmadi, Soheil Sheikh
    Soorki, Mojtaba Naderi
    Amini, Seyed Shoja
    ASIAN JOURNAL OF CONTROL, 2023, 25 (03) : 2433 - 2436