Automatic Tuning of Denoising Algorithms Parameters Without Ground Truth

被引:1
|
作者
Floquet, Arthur [1 ,2 ]
Dutta, Sayantan [3 ]
Soubies, Emmanuel [1 ,2 ]
Pham, Duong-Hung [1 ,2 ]
Kouame, Denis [1 ,2 ]
机构
[1] Univ Toulouse, IRIT Lab, F-31400 Toulouse, France
[2] CNRS, F-31400 Toulouse, France
[3] Weill Cornell Med, Dept Radiol, New York, NY 10022 USA
关键词
Noise measurement; Noise reduction; Tuning; Training; Signal processing algorithms; Costs; Noise level; Bilevel optimization; denoising; hyper-parameter tuning;
D O I
10.1109/LSP.2024.3354554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Denoising is omnipresent in image processing. It is usually addressed with algorithms relying on a set of hyperparameters that control the quality of the recovered image. Manual tuning of those parameters can be a daunting task, which calls for the development of automatic tuning methods. Given a denoising algorithm, the best set of parameters is the one that minimizes the error between denoised and ground-truth images. Clearly, this ideal approach is unrealistic, as the ground-truth images are unknown in practice. In this work, we propose unsupervised cost functions-i.e., that only require the noisy image-that allow us to reach this ideal gold standard performance. Specifically, the proposed approach makes it possible to obtain an average PSNR output within less than 1% of the best achievable PSNR.
引用
收藏
页码:381 / 385
页数:5
相关论文
共 50 条
  • [41] Automatic system for TV raster parameters tuning
    Sadykhov, R
    Klimovich, A
    Podenok, L
    DESDES '1: PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON DISCRETE-EVENT SYSTEM DESIGN, 2001, : 237 - 242
  • [42] Evaluation of HTR models without Ground Truth Material
    Strobel, Phillip Benjamin
    Clematide, Simon
    Volk, Martin
    Schwitter, Raphael
    Hodel, Tobias
    Schoch, David
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 4395 - 4404
  • [43] Evaluation Without Ground Truth in Social Media Research
    Zafarani, Reza
    Liu, Huan
    COMMUNICATIONS OF THE ACM, 2015, 58 (06) : 54 - 60
  • [44] On evaluating brain tissue classifiers without a ground truth
    Bouix, Sylvain
    Martin-Fernandez, Marcos
    Ungar, Lida
    Nakamura, Motoaki
    Koo, Min-Seong
    McCarley, Robert W.
    Shenton, Martha E.
    NEUROIMAGE, 2007, 36 (04) : 1207 - 1224
  • [45] SHAPE INITIALIZATION WITHOUT GROUND TRUTH FOR FACE ALIGNMENT
    Qin, Rizhen
    Zhang, Ting
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1278 - 1282
  • [46] A Novel Approach to Evaluate Community Detection Algorithms on Ground Truth
    Rossetti, Giulio
    Pappalardo, Luca
    Rinzivillo, Salvatore
    COMPLEX NETWORKS VII, 2016, 644 : 133 - 144
  • [47] Ground Truth Spanish Automatic Extractive Text Summarization Bounds
    Matias Mendoza, Griselda Areli
    Ledeneva, Yulia
    Garcia Hernandez, Rene Arnulfo
    Alexandrov, Mikhail
    Hernandez Castaneda, Angel
    COMPUTACION Y SISTEMAS, 2020, 24 (03): : 1241 - 1256
  • [48] Ground truth data for validation of nonrigid image registration algorithms
    Chou, YY
    Skrinjar, O
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 716 - 719
  • [49] Ground truth dataset and baseline evaluations for intrinsic image algorithms
    Grosse, Roger
    Johnson, Micah K.
    Adelson, Edward H.
    Freeman, William T.
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 2335 - 2342
  • [50] Ground truth for training and evaluation of automatic main subject detection
    Etz, SP
    Luo, JB
    HUMAN VISION AND ELECTRONIC IMAGING V, 2000, 3959 : 434 - 442