Automatic Tuning of Denoising Algorithms Parameters Without Ground Truth

被引:1
|
作者
Floquet, Arthur [1 ,2 ]
Dutta, Sayantan [3 ]
Soubies, Emmanuel [1 ,2 ]
Pham, Duong-Hung [1 ,2 ]
Kouame, Denis [1 ,2 ]
机构
[1] Univ Toulouse, IRIT Lab, F-31400 Toulouse, France
[2] CNRS, F-31400 Toulouse, France
[3] Weill Cornell Med, Dept Radiol, New York, NY 10022 USA
关键词
Noise measurement; Noise reduction; Tuning; Training; Signal processing algorithms; Costs; Noise level; Bilevel optimization; denoising; hyper-parameter tuning;
D O I
10.1109/LSP.2024.3354554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Denoising is omnipresent in image processing. It is usually addressed with algorithms relying on a set of hyperparameters that control the quality of the recovered image. Manual tuning of those parameters can be a daunting task, which calls for the development of automatic tuning methods. Given a denoising algorithm, the best set of parameters is the one that minimizes the error between denoised and ground-truth images. Clearly, this ideal approach is unrealistic, as the ground-truth images are unknown in practice. In this work, we propose unsupervised cost functions-i.e., that only require the noisy image-that allow us to reach this ideal gold standard performance. Specifically, the proposed approach makes it possible to obtain an average PSNR output within less than 1% of the best achievable PSNR.
引用
收藏
页码:381 / 385
页数:5
相关论文
共 50 条
  • [1] Unsupervised Tuning of Filter Parameters Without Ground-Truth Applied to Aerial Robots
    Li, Shushuai
    De Wagter, Christophe
    de Croon, Guido C. H. E.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 4102 - 4107
  • [2] Automatic and interactive rule inference without ground truth
    Carton, Ceres
    Lemaitre, Aurelie
    Couasnon, Bertrand
    2015 13TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2015, : 696 - 700
  • [3] Automatic tuning for the segmentation of infrared images considering uncertain ground truth
    Usamentiaga, Ruben
    Garcia, Daniel F.
    Molleda, Julio
    JOURNAL OF ELECTRONIC IMAGING, 2009, 18 (01)
  • [4] Comparison of algorithms for ultrasound image segmentation without ground truth
    Sikka, Karan
    Deserno, Thomas M.
    MEDICAL IMAGING 2010: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2010, 7627
  • [5] Introspective Evaluation of Perception Performance for Parameter Tuning without Ground Truth
    Hu, Humphrey
    Kantor, George
    ROBOTICS: SCIENCE AND SYSTEMS XIII, 2017,
  • [6] Introspective evaluation of perception performance for parameter tuning without ground truth
    Hu, Humphrey
    Kantor, George
    Robotics: Science and Systems, 2017, 13
  • [7] Validation of Automatic Cb Observations for METAR Messages without Ground Truth
    Hyvarinen, Otto
    Saltikoff, Elena
    Hohti, Harri
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2015, 54 (10) : 2063 - 2075
  • [8] Automatic Ground-Truth Validation With Genetic Algorithms for Multispectral Image Classification
    Ghoggali, Noureddine
    Melgani, Farid
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (07): : 2172 - 2181
  • [9] GROUND TRUTH FREE DENOISING BY OPTIMAL TRANSPORT
    Dittmer, Soren
    Schoenlieb, Carola-bibiane
    Maass, Peter
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024, 14 (01): : 34 - 58
  • [10] Validation of neural spike sorting algorithms without ground-truth information
    Barnett, Alex H.
    Magland, Jeremy F.
    Greengard, Leslie F.
    JOURNAL OF NEUROSCIENCE METHODS, 2016, 264 : 65 - 77