Discovery of lead quinone cathode materials for Li-ion batteries

被引:3
|
作者
Zhou, Xuan [1 ,2 ]
Khetan, Abhishek [1 ,4 ]
Zheng, Jie [5 ]
Huijben, Mark [5 ]
Janssen, Rene A. J. [1 ,3 ]
Er, Suleyman [1 ]
机构
[1] DIFFER Dutch Inst Fundamental Energy Res, Zaale 20, NL-5612 AJ Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Inst Complex Mol Syst, Mol Mat & Nanosyst, NL-5600 MB Eindhoven, Netherlands
[4] Rhein Westfal TH Aachen, Multiscale Modeling Heterogeneous Catalysis Energy, D-52062 Aachen, Germany
[5] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
来源
DIGITAL DISCOVERY | 2023年 / 2卷 / 04期
关键词
DENSITY-FUNCTIONAL THEORY; ENERGY-STORAGE; COMPUTATIONAL ELECTROCHEMISTRY; ORGANIC-MOLECULES; ACTIVE MATERIALS; REDOX PROPERTIES; LITHIUM; DERIVATIVES; DESIGN; ANTHRAQUINONE;
D O I
10.1039/d2dd00112h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic cathode materials are attractive candidates for the development of high-performance Li-ion batteries (LIBs). The chemical space of candidate molecules is too vast to be explored solely by experiments; however, it can be systematically explored by a high-throughput computational search that incorporates a spectrum of screening techniques. Here, we present a time- and resource-efficient computational scheme that incorporates machine learning and semi-empirical quantum mechanical methods to study the chemical space of approximately 200 000 quinone-based molecules for use as cathode materials in LIBs. By performing an automated search on a commercial vendor database, computing battery-relevant properties such as redox potential, gravimetric charge capacity, gravimetric energy density, and synthetic complexity score, and evaluating the structural integrity upon the lithiation process, a total of 349 molecules were identified as potentially high-performing cathode materials for LIBs. The chemical space of the screened candidates was visualized using dimensionality reduction methods with the aim of further downselecting the best candidates for experimental validation. One such directly purchasable candidate, 1,4,9,10-anthracenetetraone, was analyzed through cyclic voltammetry experiments. The measured redox potentials of the two lithiation steps, , of 3.3 and 2.4 V, were in good agreement with the predicted redox potentials, , of 3.2 and 2.3 V vs. Li/Li+, respectively. Lastly, to lay out the principles for rational design of quinone-based cathode materials beyond the current work, we constructed and discussed the quantitative structure property relationships of quinones based on the data generated from the calculations. The search for quinone-based lithium-ion battery cathode materials within a vast chemical space.
引用
收藏
页码:1016 / 1025
页数:10
相关论文
共 50 条
  • [41] Electrochemical properties of chemically modified phosphoolivines as cathode materials for Li-ion batteries
    Kulka, Andrzej
    Baster, Dominika
    Dudek, Michal
    Kielbasa, Michal
    Milewska, Anna
    Zajac, Wojciech
    Swierczek, Konrad
    Molenda, Janina
    JOURNAL OF POWER SOURCES, 2013, 244 : 565 - 569
  • [42] Blended cathode materials for all-solid-state Li-ion batteries
    Lee, Jeong-Seon
    Heo, Kookjin
    Kim, Ho-Sung
    Kim, Min-Young
    Kim, Jaekook
    Kang, Sung-Won
    Lim, Jinsub
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 : 553 - 559
  • [43] Silicates and titanates as high-energy cathode materials for Li-ion batteries
    Dominko, Robert
    ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS, 2010, 7683
  • [44] Review of the first principles calculations and the design of cathode materials for Li-ion batteries
    Liu-Ming Yan
    Jun-Ming Su
    Chao Sun
    Bao-Hua Yue
    Advances in Manufacturing, 2014, 2 (04) : 358 - 368
  • [45] Synthesis of LiFePO4 nanoplatelets as cathode materials for Li-ion batteries
    Kapaev R.R.
    Novikova S.A.
    Kulova T.L.
    Skundin A.M.
    Yaroslavtsev A.B.
    Nanotechnologies in Russia, 2016, 11 (11-12): : 757 - 760
  • [46] Transition-metal chlorides as conversion cathode materials for Li-ion batteries
    Li, Ting
    Chen, Zhong X.
    Cao, Yu L.
    Ai, Xin P.
    Yang, Han X.
    ELECTROCHIMICA ACTA, 2012, 68 : 202 - 205
  • [47] Phase stability of Li-Mn-O oxides as cathode materials for Li-ion batteries
    Longo, Roberto C.
    Kong, Fantai
    Santosh, K. C.
    Park, M. S.
    Yoon, J.
    Yeon, D. H.
    Park, J. H.
    Doo, S. G.
    Cho, K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [48] Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries
    Yan, Jianhua
    Liu, Xingbo
    Li, Bingyun
    RSC ADVANCES, 2014, 4 (108) : 63268 - 63284
  • [49] Layered cathode for improving safety of Li-ion batteries
    Imachi, Naoki
    Takano, Yasuo
    Fujimoto, Hiroyuki
    Kida, Yoshinori
    Fujitani, Shin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (05) : A412 - A416
  • [50] Lead-based systems as suitable anode materials for Li-ion batteries
    Martos, M
    Morales, J
    Sánchez, L
    ELECTROCHIMICA ACTA, 2003, 48 (06) : 615 - 621