Prokaryotic membrane coat - like proteins: An update

被引:3
|
作者
Ferrelli, Leticia [1 ,3 ]
Pidre, Matias L. [1 ,3 ]
Garcia-Dominguez, Ruben [1 ]
Alberca, Lucas N. [1 ,4 ]
del Saz-Navarro, DMaria [1 ,5 ]
Santana-Molina, Carlos [1 ]
Devos, Damien P. [1 ,2 ]
机构
[1] Univ Pablo de Olavide UPO, Ctr Andaluz Biol Desarrollo CABD, CSIC, Seville 41013, Spain
[2] Pasteur Inst Lille, Ctr Infect & Immun Lille, 1 Rue Prof Calmette, F-59019 Lille, France
[3] Univ Nacl La Plata UNLP, Fac Ciencias Exactas, Inst Biotecnol & Biol Mol IBBM, UNLP CONICET, La Plata, Buenos Aires, Argentina
[4] Univ Nacl La Plata UNLP, Fac Ciencias Exactas, Lab Invest & Desarrollo Bioact LIDeB, La Plata, Buenos Aires, Argentina
[5] Pablo de Olavide Univ, Intelligent Data Anal Grp DATAi, Ctra Utrera,Km 1, Seville, Spain
基金
欧盟地平线“2020”;
关键词
Membrane coat proteins; Gemmata obscuriglobus; Planctomycetes; Archaea; AlphaFold; BACTERIA; PREDICTION; SEQUENCE; ARCHAEA;
D O I
10.1016/j.jsb.2023.107987
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Membrane coat proteins are essential players in the eukaryotic endomembrane traffic system. Previous work identified proteins with the membrane-coat architecture in prokaryotes, specifically in the Planctomycetes, Verrucomicrobia and Chlamydiae (PVC) superphylum, bacteria that display the most developed prokaryotic endomembrane system. Hence, the membrane coat-like (MCL) proteins are predicted to play a central role in this system but their actual function is still unknown. In this work we strengthened previous structure predictions for these prokaryotic MCL proteins. We also detected new putative MCL proteins in the Planctomycete Gemmata obscuriglobus. Structural analysis of these revealed the presence of additional domains apart from the & beta;-propeller and & alpha;-solenoid combination, characteristic of the membrane-coat architecture. Functions associated with these domains include some related to carbohydrate or membrane/lipid binding. Using homology-based methods, we found MCL proteins in other bacterial phyla, but the most abundant hits are still restricted to Planctomycetes and Verrucomicrobia. Detailed inspection of neighbouring genes of MCL in G. obscuriglobus supports the idea that the function of these proteins is related to membrane manipulation. No significant hits were found in Archaea, including Asgard archaea. More than 10 years after their original detection, PVC bacteria are still uniquely linked to eukaryotes through the structure of the MCL proteins sustaining their endomembrane system.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A search method for homologs of small proteins. Ubiquitin-like proteins in prokaryotic cells?
    Bienkowska, JR
    Hartman, H
    Smith, TF
    PROTEIN ENGINEERING, 2003, 16 (12): : 897 - 904
  • [22] The structure of a prokaryotic viral envelope protein expands the landscape of membrane fusion proteins
    Kamel El Omari
    Sai Li
    Abhay Kotecha
    Thomas S. Walter
    Eduardo A. Bignon
    Karl Harlos
    Pentti Somerharju
    Felix De Haas
    Daniel K. Clare
    Mika Molin
    Felipe Hurtado
    Mengqiu Li
    Jonathan M. Grimes
    Dennis H. Bamford
    Nicole D. Tischler
    Juha T. Huiskonen
    David I. Stuart
    Elina Roine
    Nature Communications, 10
  • [23] The structure of a prokaryotic viral envelope protein expands the landscape of membrane fusion proteins
    El Omari, Kamel
    Li, Sai
    Kotecha, Abhay
    Walter, Thomas S.
    Bignon, Eduardo A.
    Harlos, Karl
    Somerharju, Pentti
    De Haas, Felix
    Clare, Daniel K.
    Molin, Mika
    Hurtado, Felipe
    Li, Mengqiu
    Grimes, Jonathan M.
    Bamford, Dennis H.
    Tischler, Nicole D.
    Huiskonen, Juha T.
    Stuart, David I.
    Roine, Elina
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [24] Coat proteins regulating membrane traffic between the ER and Golgi complex
    Kreis, TE
    Scales, SJ
    Gomez, M
    Whitney, JA
    Pepperkok, R
    MOLECULAR BIOLOGY OF THE CELL, 1998, 9 : 129A - 129A
  • [25] The Conserved Bardet-Biedl Syndrome Proteins Assemble a Coat that Traffics Membrane Proteins to Cilia
    Jin, Hua
    White, Susan Roehl
    Shida, Toshinobu
    Schulz, Stefan
    Aguiar, Mike
    Gygi, Steven P.
    Bazan, J. Fernando
    Nachury, Maxence V.
    CELL, 2010, 141 (07) : 1208 - U198
  • [26] Camps 2.0: Exploring the sequence and structure space of prokaryotic, eukaryotic, and viral membrane proteins
    Neumann, Sindy
    Hartmann, Holger
    Martin-Galiano, Antonio J.
    Fuchs, Angelika
    Frishman, Dmitrij
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2012, 80 (03) : 839 - 857
  • [27] FtsY, the prokaryotic signal recognition particle receptor homologue, is essential for biogenesis of membrane proteins
    Seluanov, A
    Bibi, E
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (04) : 2053 - 2055
  • [28] Comparative analysis and "expression space'' coverage of the production of prokaryotic membrane proteins for structural genomics
    Surade, Sachin
    Klein, Markus
    Stolt-Bergner, Peggy C.
    Muenke, Cornelia
    Roy, Ankita
    Michel, Hartmut
    PROTEIN SCIENCE, 2006, 15 (09) : 2178 - 2189
  • [29] Membrane Tension Inhibits Deformation by Coat Proteins in Clathrin-Mediated Endocytosis
    Hassinger, Julian
    Drubin, David
    Oster, George
    Rangamani, Padmini
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 594A - 594A
  • [30] Membrane tension inhibits deformation by coat proteins in clathrin-mediated endocytosis
    Hassinger, J.
    Drubin, D. G.
    Oster, G.
    Rangamani, P.
    MOLECULAR BIOLOGY OF THE CELL, 2015, 26