New Results on the Unimodular Equivalence of Multivariate Polynomial Matrices

被引:0
|
作者
Li, Dongmei [1 ]
Chen, Zuo [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
multidimensional system; nD polynomial matrix; Smith normal form; unimodular equivalence; 2-D SYSTEMS-THEORY; FACTORIZATION; MODULES;
D O I
10.3390/math11122745
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equivalence of systems is a crucial concept in multidimensional systems. The Smith normal forms of multivariate polynomial matrices play important roles in the theory of polynomial matrices. In this paper, we mainly study the unimodular equivalence of some special kinds of multivariate polynomial matrices and obtain some tractable criteria under which such matrices are unimodular equivalent to their Smith normal forms. We propose an algorithm for reducing such nD polynomial matrices to their Smith normal forms and present an example to illustrate the availability of the algorithm. Furthermore, we extend the results to the non-square case.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A NOTE ON SEMISCALAR EQUIVALENCE OF POLYNOMIAL MATRICES
    Prokip, Volodymyr M.
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 195 - 203
  • [22] Equivalence of Polynomial Identity Testing and Deterministic Multivariate Polynomial Factorization
    Kopparty, Swastik
    Saraf, Shubhangi
    Shpilka, Amir
    [J]. 2014 IEEE 29TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2014, : 169 - 180
  • [23] Factorizations for a class of multivariate polynomial matrices
    Dong Lu
    Dingkang Wang
    Fanghui Xiao
    [J]. Multidimensional Systems and Signal Processing, 2020, 31 : 989 - 1004
  • [24] Factorizations for a class of multivariate polynomial matrices
    Lu, Dong
    Wang, Dingkang
    Xiao, Fanghui
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (03) : 989 - 1004
  • [25] Locally invertible multivariate polynomial matrices
    Lobo, Ruben G.
    Bitzer, Donald L.
    Vouk, Mladen A.
    [J]. CODING AND CRYPTOGRAPHY, 2006, 3969 : 427 - 441
  • [26] Polynomial equivalence problems and applications to multivariate cryptosystems
    Levy-dit-Vehel, F
    Perret, L
    [J]. PROGRESS IN CRYPTOLOGY -INDOCRYPT 2003, 2003, 2904 : 235 - 251
  • [27] BILATERAL POLYNOMIAL EQUATIONS WITH UNIMODULAR RIGHT-HAND-SIDE MATRICES
    Kaczorek, Tadeusz
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2003, 13 (04) : 511 - 514
  • [28] UNIMODULAR MATRICES
    HELLER, I
    HOFFMAN, AJ
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (04) : 1321 - &
  • [29] On minor prime factorizations for multivariate polynomial matrices
    Jiancheng Guan
    Weiqing Li
    Baiyu Ouyang
    [J]. Multidimensional Systems and Signal Processing, 2019, 30 : 493 - 502
  • [30] On minor prime factorizations for multivariate polynomial matrices
    Guan, Jiancheng
    Li, Weiqing
    Ouyang, Baiyu
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2019, 30 (01) : 493 - 502