Two-dimensional diffusive epidemic process in the presence of quasiperiodic and quenched disorder

被引:0
|
作者
Alencar, D. S. M. [1 ]
Alves, T. F. A. [1 ]
Alves, G. A. [2 ]
Lima, F. W. S. [1 ]
Macedo-Filho, A. [2 ]
Ferreira, R. S. [3 ]
机构
[1] Univ Fed Piaui, Dept Fis, BR-57072970 Teresina, PI, Brazil
[2] Univ Estadual Piaui, Dept Fis, BR-64002150 Teresina, PI, Brazil
[3] Univ Fed Ouro Preto, Dept Ciencias Exatas & Aplicadas, BR-35931008 Joao Monlevade, MG, Brazil
关键词
diffusive epidemic process; quenched disorder; quasiperiodic order; Harris-Barghathi-Vojta criterion; metapopulation models; CRITICAL-BEHAVIOR; MODEL;
D O I
10.1088/1742-5468/acc64d
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work considers the diffusive epidemic process model coupled to the square lattice, the Penrose quasiperiodic lattice, and the Voronoi-Delaunay random lattice. The main objective is to verify if spatial disorder influences critical behavior. According to the Harris-Barghathi-Vojta criterion, quenched or quasiperiodic disorder can change the critical behavior of the system, depending on the disorder decay exponent of the lattice. We employed extensive Monte Carlo simulations of the relevant quantities. Furthermore, we estimate the critical exponent ratios. Our results suggest that the disorder does not change the critical behavior when comparing the critical exponent ratios for the three studied lattice structures. In addition, the critical exponents depend on the three possible diffusion regimes: (1) where diffusion is dominated by susceptible individuals, (2) where infected and susceptible individuals have the same diffusion constant, and (3) where diffusion is dominated by the infected individuals.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] High order diffraction suppression by quasiperiodic two-dimensional gratings
    Niu, Jiebin
    Shi, Lina
    Liu, Ziwei
    Pu, Tanchao
    Li, Hailiang
    Wang, Guanya
    Xie, Changqing
    OPTICAL MATERIALS EXPRESS, 2017, 7 (02): : 366 - 375
  • [42] Exploring multifractal critical phases in two-dimensional quasiperiodic systems
    Yang, Chao
    Yang, Weizhe
    Wang, Yongjian
    Wang, Yucheng
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [43] Critical behavior of SIS model on two-dimensional quasiperiodic tilings
    Mota, M. P. S.
    Alves, G. A.
    Macedo-Filho, A.
    Alves, T. F. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 510 : 577 - 586
  • [44] Numerical investigation of localization in two-dimensional quasiperiodic mosaic lattice
    Wang, Hui-Hui
    Wang, Si-Si
    Yu, Yan
    Zhang, Biao
    Dai, Yi-Ming
    Chen, Hao-Can
    Zhang, Yi-Cai
    Zhang, Yan-Yang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (13)
  • [45] Critical properties of a two-dimensional Ising magnet with quasiperiodic interactions
    Alves, G. A.
    Vasconcelos, M. S.
    Alves, T. F. A.
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [46] Quasiperiodic routes to chaos in confined two-dimensional differential convection
    Oteski, Ludomir
    Duguet, Yohann
    Pastur, Luc
    Le Quere, Patrick
    PHYSICAL REVIEW E, 2015, 92 (04):
  • [47] Uncoupled defect modes in a two-dimensional quasiperiodic photonic crystal
    Wang, YQ
    Feng, ZF
    Xu, XS
    Cheng, BY
    Zhang, DZ
    EUROPHYSICS LETTERS, 2003, 64 (02): : 185 - 189
  • [48] QUENCHED RANDOMNESS IN THE TWO-DIMENSIONAL FERROMAGNETIC PLANAR MODEL
    JOSE, JV
    PHYSICAL REVIEW LETTERS, 1981, 46 (24) : 1591 - 1594
  • [49] Quenched approximation artifacts: A study in two-dimensional QED
    Bardeen, W
    Duncan, A
    Eichten, E
    Thacker, H
    PHYSICAL REVIEW D, 1998, 57 (07) : 3890 - 3901
  • [50] Quenched bond dilution in two-dimensional Potts models
    Chatelain, C
    Berche, B
    Shchur, LN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (45): : 9593 - 9614