Landing Simulation in the Full Two-Body Problem of Binary Asteroids

被引:1
|
作者
Wen, Tongge [1 ]
Zeng, Xiangyuan [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Asteroid Deflection; Finite Element Formulation; Computational Fluid Dynamics; Elementary Algebra; Lagrange Points; Uncrewed Spacecraft; Monte Carlo Simulation; Friction Coefficient; Sample Return Missions; Spacecraft Communication; LANDER; DEPLOYMENT; IMPACT; STABILITY; DYNAMICS; CONTACT; BODIES; MOTION;
D O I
10.2514/1.G006526
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper investigates the motion of a lander in a fully coupled spin-orbit binary system. The full dynamical equations are established, including the states of the lander and the two small celestial bodies. The binary companions are represented by tetrahedral meshes when propagating their states; therefore, their irregular shapes are preserved. The mutual gravitational interactions between the two bodies and the attraction of the lander in this binary system are evaluated by the finite element method. The contact motion between the lander in arbitrary shapes/inertia and the asteroid surface is processed by the polygonal contact model. The resulting framework is applied to the binary asteroid system, 66391 Moshup. The deployment simulations of four typical initial positions near the secondary body suggest the lander release should avoid polar regions. The dynamical effect of the primary body on the lander is also investigated. The numerical results show that the accumulative effect of the weak tidal force from the primary body is nonnegligible. In addition, four different internal structures of the secondary body are constructed by operating the tetrahedron mesh. The touchdown positions and settling time of the landing trajectories on these four models are summarized and compared. The results indicate that variations of the internal structure have a nonnegligible effect on the local gravitational field around the secondary body, and therefore affect the locomotion of the lander.
引用
下载
收藏
页码:885 / 899
页数:15
相关论文
共 50 条
  • [21] Love and the two-body problem
    Jamieson, V
    PHYSICS WORLD, 2001, 14 (10) : 37 - 39
  • [22] Two-body optimization for deflecting earth-crossing asteroids
    Park, SY
    Ross, IM
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1999, 22 (03) : 415 - 420
  • [23] Two-body optimization for deflecting earth-crossing asteroids
    Park, Sang-Young
    Ross, I. Michael
    Journal of Guidance, Control, and Dynamics, 22 (03): : 415 - 420
  • [24] The Perturbed Full Two-body Problem: Application to Post-DART Didymos
    Meyer, Alex J.
    Agrusa, Harrison F.
    Richardson, Derek C.
    Daly, R. Terik
    Fuentes-Munoz, Oscar
    Hirabayashi, Masatoshi
    Michel, Patrick
    Merrill, Colby C.
    Nakano, Ryota
    Cheng, Andrew F.
    Barbee, Brent
    Barnouin, Olivier S.
    Chesley, Steven R.
    Ernst, Carolyn M.
    Gkolias, Ioannis
    Moskovitz, Nicholas A.
    Naidu, Shantanu P.
    Pravec, Petr
    Scheirich, Petr
    Thomas, Cristina A.
    Tsiganis, Kleomenis
    Scheeres, Daniel J.
    PLANETARY SCIENCE JOURNAL, 2023, 4 (08):
  • [26] Nuclear two-body variational problem
    Rarita, W
    Slawsky, ZI
    PHYSICAL REVIEW, 1938, 54 (12): : 1053 - 1054
  • [27] Bootstrapping the relativistic two-body problem
    Christoph Dlapa
    Gregor Kälin
    Zhengwen Liu
    Rafael A. Porto
    Journal of High Energy Physics, 2023
  • [28] Orbits in a generalized two-body problem
    McInnes, CR
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2003, 26 (05) : 743 - 749
  • [29] The Two-Body Problem in Celestial Mechanics
    Sarill, William
    JOURNAL OF HUMANISTIC MATHEMATICS, 2018, 8 (01): : 475 - 475
  • [30] Bootstrapping the relativistic two-body problem
    Dlapa, Christoph
    Kaelin, Gregor
    Liu, Zhengwen
    Porto, Rafael A. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)