MitoSNARE Assembly and Disassembly Factors Regulate Basal Autophagy and Aging in C. elegans

被引:3
|
作者
Gkikas, Ilias [1 ,2 ]
Daskalaki, Ioanna [1 ,2 ]
Kounakis, Konstantinos [1 ,3 ]
Tavernarakis, Nektarios [1 ,3 ]
Lionaki, Eirini [1 ]
机构
[1] Fdn Res & Technol Hellas, Inst Mol Biol & Biotechnol, Iraklion 70013, Greece
[2] Univ Crete, Sch Sci & Engn, Dept Biol, Iraklion 71110, Greece
[3] Univ Crete, Fac Med, Dept Basic Sci, Iraklion 71110, Greece
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
mitochondria; SNAREs; autophagy; aging; SYX-17; NSF-1; SNARE SYNTAXIN 17; PROTEINS; EXPRESSION; FUSION; LOCALIZATION; MECHANISMS; MACHINERY; VESICLES; ISOFORM;
D O I
10.3390/ijms24044230
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SNARE proteins reside between opposing membranes and facilitate vesicle fusion, a physiological process ubiquitously required for secretion, endocytosis and autophagy. With age, neurosecretory SNARE activity drops and is pertinent to age-associated neurological disorders. Despite the importance of SNARE complex assembly and disassembly in membrane fusion, their diverse localization hinders the complete understanding of their function. Here, we revealed a subset of SNARE proteins, the syntaxin SYX-17, the synaptobrevins VAMP-7, SNB-6 and the tethering factor USO-1, to be either localized or in close proximity to mitochondria, in vivo. We term them mitoSNAREs and show that animals deficient in mitoSNAREs exhibit increased mitochondria mass and accumulation of autophagosomes. The SNARE disassembly factor NSF-1 seems to be required for the effects of mitoSNARE depletion. Moreover, we find mitoSNAREs to be indispensable for normal aging in both neuronal and non-neuronal tissues. Overall, we uncover a previously unrecognized subset of SNAREs that localize to mitochondria and propose a role of mitoSNARE assembly and disassembly factors in basal autophagy regulation and aging.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Iron promotes protein insolubility and aging in C. elegans
    Klang, Ida M.
    Schilling, Birgit
    Sorensen, Dylan J.
    Sahu, Alexandria K.
    Kapahi, Pankaj
    Andersen, Julie K.
    Swoboda, Peter
    Killilea, David W.
    Gibson, Bradford W.
    Lithgow, Gordon J.
    AGING-US, 2014, 6 (11): : 975 - 991
  • [32] C. elegans aging:: Proteolysis cuts both ways
    Bowerman, Bruce
    CURRENT BIOLOGY, 2007, 17 (13) : R514 - R516
  • [33] Identification and characterization of phosphatases that regulate TGFβ signaling in C. elegans
    Xiong, Sheng
    Savage-Dunn, Cathy
    DEVELOPMENTAL BIOLOGY, 2008, 319 (02) : 528 - 528
  • [34] Signals from the reproductive system regulate the lifespan of C. elegans
    Honor Hsin
    Cynthia Kenyon
    Nature, 1999, 399 : 362 - 366
  • [35] Calcineurin may regulate multiple endocytic processes in C. elegans
    Song, Hyun-Ok
    Ahnn, Joohong
    BMB REPORTS, 2011, 44 (02) : 96 - 101
  • [36] Mechanisms that regulate morphogenesis of a highly branched neuron in C. elegans
    Sundararajan, Lakshmi
    Stern, Jamie
    Miller, David M., III
    DEVELOPMENTAL BIOLOGY, 2019, 451 (01) : 53 - 67
  • [37] Defining Centriole Function In C. elegans Cilia Assembly
    Serwas, D.
    Dammermann, A.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [38] Germline Stem and Progenitor Cell Aging in C. elegans
    Tolkin, Theadora
    Hubbard, E. Jane Albert
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [39] Role of the somatic gonad in regulation of C. elegans aging
    Ghazi, A
    GERONTOLOGIST, 2004, 44 : 24 - 25
  • [40] Mitochondrial stress and aging: Lessons from C. elegans
    Chen, Peng X.
    Zhang, Leyuan
    Chen, Di
    Tian, Ye
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2024, 154 : 69 - 76