PAIRS TRADING WITH TOPOLOGICAL DATA ANALYSIS

被引:0
|
作者
Majumdar, Sourav [1 ,3 ]
Laha, Arnab kumar [2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Management Sci, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Management Ahmedabad, Operat & Decis Sci Area, Ahmadabad 380015, Gujarat, India
[3] Indian Inst Management, Ahmadabad, India
关键词
Pairs trading; topological data analysis; statistical arbitrage; STATISTICAL ARBITRAGE; STRATEGIES; CHAOS;
D O I
10.1142/S021902492450002X
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we propose a pairs trading strategy using the theory of topological data analysis (TDA). The proposed strategy is model-free. We propose a TDA-based distance to measure dependence between a pair of stochastic processes. We derive an upper bound of this distance in terms of a function of the canonical correlation of the processes, which allows for interpretability of this distance. We also study Karhunen-Loeve expansions of certain processes to qualitatively explore their shape properties. We check the performance of the strategy on simulated data from correlated geometric Brownian motion, correlated Ornstein-Uhlenbeck process and DCC-GARCH. We also examine the profitability of the proposed strategy on high-frequency data from the National Stock Exchange of India in 2018. We compare the method to a Euclidean distance-based method for pairs trading. We propose a pairs trading strategy evaluation framework using a Bayesian model for comparing gains from these two strategies. We find that the proposed approach based on TDA is more profitable and trades more frequently than the Euclidean distance-based strategy.
引用
收藏
页数:43
相关论文
共 50 条
  • [41] Pairs trading via unsupervised learning
    Han, Chulwoo
    He, Zhaodong
    Toh, Alenson Jun Wei
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 307 (02) : 929 - 947
  • [42] Spread Movement Prediction for Pairs Trading with High-Frequency Limit Order Data
    Su, Chiu-Hung
    Lai, Hsu-Chao
    Shih, Wen-Yueh
    Wangt, Jun-Zhe
    Huang, Jiun-Long
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 64 - 71
  • [43] A Cooperative Dynamic Approach to Pairs Trading
    Ramos-Requena, J. P.
    Lopez-Garcia, M. N.
    Sanchez-Granero, M. A.
    Trinidad-Segovia, J. E.
    [J]. COMPLEXITY, 2021, 2021
  • [44] An optimal pairs-trading rule
    Song, Qingshuo
    Zhang, Qing
    [J]. AUTOMATICA, 2013, 49 (10) : 3007 - 3014
  • [45] Pairs trading techniques: An empirical contrast
    Carrasco Blazquez, Mario
    De la Orden De la Cruz, Carmen
    Prado Roman, Camilo
    [J]. EUROPEAN RESEARCH ON MANAGEMENT AND BUSINESS ECONOMICS, 2018, 24 (03) : 160 - 167
  • [46] PAIRS TRADING: AN OPTIMAL SELLING RULE
    Kuo, Kevin
    Luu, Phong
    Nguyen, Duy
    Perkerson, Eric
    Thompson, Katherine
    Zhang, Qing
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2015, 5 (03) : 489 - 499
  • [47] Pairs trading of Chinese and international commodities
    Fernandez-Perez, Adrian
    Frijns, Bart
    Indriawan, Ivan
    Tse, Yiuman
    [J]. APPLIED ECONOMICS, 2020, 52 (48) : 5203 - 5217
  • [48] Pairs trading strategy: a recommendation system
    Al-Naymat, Ghazi
    Al-Kasassbeh, Mouhammd
    Sober, Zyad
    [J]. International Journal of Computers and Applications, 2020, 42 (08) : 787 - 797
  • [49] Pairs trading: optimal thresholds and profitability
    Zeng, Zhengqin
    Lee, Chi-Guhn
    [J]. QUANTITATIVE FINANCE, 2014, 14 (11) : 1881 - 1893
  • [50] The high sensitivity of pairs trading returns
    Huck, Nicolas
    [J]. APPLIED ECONOMICS LETTERS, 2013, 20 (14) : 1301 - 1304