Study of the concentrations of Kr and Ar in high-purity nitrogen of JUNO

被引:0
|
作者
Zhang, Haodong [1 ]
Song, Haisheng [1 ]
Ling, Xin [5 ]
Hu, Tao [2 ,3 ,4 ]
Zhou, Li [2 ,3 ,4 ]
Cai, Xiao [2 ,3 ,4 ]
Fang, Jian [2 ,3 ,4 ]
Sun, Lijun [2 ,3 ,4 ]
Sun, Xilei [2 ,3 ,4 ]
Xie, Yuguang [2 ,3 ,4 ]
Shao, Junyu [2 ,3 ,4 ]
Yang, Chengkai [1 ]
Li, Xinghua [1 ]
Jin, Shengjie [1 ]
Qu, Wenbao [1 ]
Ren, Shuaishuai [1 ]
Yu, Boxiang [2 ,3 ,4 ]
机构
[1] Northwest Normal Univ, Coll Phys & Elect Engn, Lanzhou 730070, Gansu, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[3] Inst High Energy Phys, State Key Lab Nucl Detect & Nucl Elect, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[5] Univ South China, Coll Nucl Sci & Technol, Hengyang 421001, Hunan, Peoples R China
关键词
JUNO; Liquid scintillator; Low-background; HPN; Low-temperature physical adsorption;
D O I
10.1007/s41605-024-00460-1
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
PurposeIn the JUNO, the LS serves as the medium for detecting neutrinos. When purifying the LS using HPN, it is essential to ensure low background levels of radioactive krypton and argon in the HPNMethodsUsing the low-temperature physical adsorption properties of activated carbon to adsorb and separate radioactive gases such as radon, krypton, and argon from nitrogen in a liquid nitrogen environment.ResultsOur results indicated that the 85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{85}$$\end{document}Kr concentration in the HPN purified by HP activated carbon is 6.84 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3}$$\end{document}, and the 39\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{39}$$\end{document}Ar concentration is 3.6 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3}$$\end{document} for overground HPN, while the 85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{85}$$\end{document}Kr concentration is 31.4 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3}$$\end{document} for underground HPN. The 85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{85}$$\end{document}Kr concentration in the nitrogen purified by coconut shell activated carbon is 0. 46 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3}$$\end{document}.ConclusionsAfter adsorption with activated carbon, the content of 85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{85}$$\end{document}Kr and 39\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{39}$$\end{document}Ar in HPN is lower than the 50 mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3}$$\end{document} required by JUNO. This work validates that the 85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{85}$$\end{document}Kr and 39\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{39}$$\end{document}Ar concentrations in HPN is fit the JUNO requirement.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] HIGH-PURITY TANTALUM
    TORTI, ML
    ROLSTEN, RF
    [J]. TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1960, 218 (02): : 367 - 367
  • [22] High-purity preservative
    不详
    [J]. SOAP COSMETICS CHEMICAL SPECIALTIES, 1997, 73 (10): : 93 - 93
  • [23] HIGH-PURITY TANTALUM
    ROLSTEN, RF
    [J]. TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1959, 215 (03): : 472 - 476
  • [24] HIGH-PURITY INSULINS
    不详
    [J]. LANCET, 1977, 1 (8003): : 128 - 129
  • [25] HIGH-PURITY METALS
    不详
    [J]. CHEMIKER-ZEITUNG, 1987, 111 (05): : A70 - A70
  • [26] High-purity diamond
    Simon Pleasants
    [J]. Nature Photonics, 2013, 7 (12) : 939 - 939
  • [27] HIGH-PURITY VANADIUM
    LEI, KP
    SULLIVAN, TA
    [J]. JOURNAL OF THE LESS-COMMON METALS, 1968, 14 (01): : 145 - &
  • [28] HIGH-PURITY TITANIUM
    MCQUILLAN, MK
    TURNER, JA
    [J]. JOURNAL OF THE INSTITUTE OF METALS, 1955, 83 (10): : 263 - 263
  • [29] High-purity iron
    不详
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE, 1942, 233 : 584 - 585
  • [30] Reversible variation of donor concentrations in high-purity InP by thermal treatment
    Kubota, E
    Ando, K
    Yamada, S
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 87 (06) : 2885 - 2889