Bayesian inference for long memory term structure models

被引:0
|
作者
Valente, Fernanda [1 ]
Laurini, Marcio [1 ,2 ]
机构
[1] FEARP Univ Sao Paulo, Dept Econ, Sao Paulo, Brazil
[2] Univ Sao Paulo, Dept Econ, Sch Econ Business Adm & Accounting Ribeirao Preto, Ave Bandeirantes 3900, BR-14040905 Ribeirao Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Term structure; long memory; Bayesian forecasting; Laplace approximations; YIELD CURVE; STOCHASTIC VOLATILITY; RATES;
D O I
10.1080/00949655.2023.2299938
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we propose a novel adaptation of the Dynamic Nelson-Siegel term structure model, incorporating long memory properties to enhance its forecasting accuracy. Our approach involves modelling the evolution of latent factors using fractional Gaussian noise processes, approximated by a weighted sum of independent first-order autoregressive components. The resulting formulation allows for a Gaussian Markov Random Field representation, facilitating the application of computationally efficient Bayesian techniques through Integrated Nested Laplace Approximations. Extensive simulation and empirical analysis demonstrate that integrating long memory significantly improves the model's forecasting performance, particularly for longer time horizons. By shedding light on the potential benefits of incorporating long memory concepts into traditional term structure models, our research highlights its utility in capturing intricate temporal dependencies and enhancing prediction precision.
引用
收藏
页码:1735 / 1759
页数:25
相关论文
共 50 条
  • [1] Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting
    Rodriguez Rivero, Cristian
    Pucheta, Julian
    Patino, Daniel
    Luis Puglisi, Jose
    Otano, Paula
    Franco, Leonardo
    Juarez, Gustavo
    Gorrostieta, Efren
    David Orjuela-Canon, Alvaro
    [J]. APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2019, 2019, 1096 : 197 - 208
  • [2] Semiparametric Bayesian inference of long-memory stochastic volatility models
    Jensen, MJ
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2004, 25 (06) : 895 - 922
  • [3] Long memory affine term structure models
    Golinski, Adam
    Zaffaroni, Paolo
    [J]. JOURNAL OF ECONOMETRICS, 2016, 191 (01) : 33 - 56
  • [4] Inference of Term Structure Models
    Zhou, Yanli
    Ge, Xiangyu
    Wu, Yonghong
    Tian, Tianhai
    [J]. 2016 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI), 2016, : 553 - 558
  • [5] Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models
    Andrade, Plinio
    Rifo, Laura
    Torres, Soledad
    Torres-Aviles, Francisco
    [J]. ENTROPY, 2015, 17 (10) : 6576 - 6597
  • [6] Bayesian inference for long-term prediction of significant wave height
    Scotto, M. G.
    Soares, C. Guedes
    [J]. COASTAL ENGINEERING, 2007, 54 (05) : 393 - 400
  • [7] BAYESIAN INFERENCE FOR COPULA MODELS
    Craiu, Mariana
    Craiu, Radu V.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2008, 70 (03): : 3 - 10
  • [8] Bayesian inference for bioenergetic models
    Johnson, Leah R.
    Pecquerie, Laure
    Nisbet, Roger M.
    [J]. ECOLOGY, 2013, 94 (04) : 882 - 894
  • [9] Bayesian Inference for ARFIMA Models
    Durham, Garland
    Geweke, John
    Porter-Hudak, Susan
    Sowell, Fallaw
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (04) : 388 - 410
  • [10] Bayesian inference with misspecified models
    Walker, Stephen G.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (10) : 1621 - 1633