Realization and Hardware Implementation of Gating Units for Long Short-Term Memory Network Using Hyperbolic Sine Functions

被引:0
|
作者
Joseph, Tresa [1 ]
Bindiya, T. S. [1 ]
机构
[1] Natl Inst Technol Calicut, Dept Elect & Commun Engn, Kozhikode 673601, India
关键词
Hardware; Long short term memory; Computer architecture; Recurrent neural networks; Mathematical models; Field programmable gate arrays; Convergence; Activation functions (AFs); long short-term memory (LSTM); recurrent neural networks (RNNs);
D O I
10.1109/TCAD.2023.3293045
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes a new activation function (AF) sinh(beta x) +sinh(-1)(beta x) called combined hyperbolic Sine (comb-H-sine) to replace existing AFS like sigma and tanh in long short-term memory (LSTM) neural networks. The comb-H-sine function is implemented using purely combinational architectures with a 16-bit data width with fixed-point representation, resulting in improved accuracy. Both software and hardware modeling are used to investigate the proposed architecture. Compared to prior works on sigma and tanh functions, the hardware for the comb-H-sine function shows significant improvements in power consumption, number of cells, cell area, and delay. The proposed LSTM architecture using comb-H-sine outperforms existing AFs in terms of power delay product and accuracy on various datasets.
引用
收藏
页码:5141 / 5145
页数:5
相关论文
共 50 条
  • [41] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [42] Improved long short-term memory network based short term load forecasting
    Cui, Jie
    Gao, Qiang
    Li, Dahua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4428 - 4433
  • [43] Classification of Power Quality Disturbances Using Convolutional Network and Long Short-Term Memory Network
    Rodrigues Junior, Wilson Leal
    Silva Borges, Fabbio Anderson
    Lira Rabelo, Ricardo de A.
    Alves de Lima, Bruno Vicente
    Almeida de Alencar, Jose Eduardo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [44] Short-Term Forecasting COVID-19 Cases In Turkey Using Long Short -Term Memory Network
    Helli, Selahattin Serdar
    Demirci, Cagkan
    Coban, Onur
    Hamamci, Andac
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [45] Long short-term memory neural network for glucose prediction
    Carrillo-Moreno, Jaime
    Perez-Gandia, Carmen
    Sendra-Arranz, Rafael
    Garcia-Saez, Gema
    Hernando, M. Elena
    Gutierrez, Alvaro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09): : 4191 - 4203
  • [46] Long Short-Term Memory Network for Wireless Channel Prediction
    Tong, Xiaoyun
    Sun, Songlin
    SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, 2018, 473 : 19 - 26
  • [47] Hierarchical Long Short-Term Memory Network for Cyberattack Detection
    Hou, Haixia
    Xu, Yingying
    Chen, Menghan
    Liu, Zhi
    Guo, Wei
    Gao, Mingcheng
    Xin, Yang
    Cui, Lizhen
    IEEE ACCESS, 2020, 8 : 90907 - 90913
  • [48] Composite Quantile Regression Long Short-Term Memory Network
    Xie, Zongxia
    Wen, Hao
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 513 - 524
  • [49] Composite Quantile Regression Long Short-Term Memory Network
    College of Intelligence and Computing, Tianjin University, Tianjin
    300350, China
    Lect. Notes Comput. Sci., (513-524):
  • [50] Long Short-Term Memory Network Design for Analog Computing
    Zhao, Zhou
    Srivastava, Ashok
    Peng, Lu
    Chen, Qing
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2019, 15 (01)