Realization and Hardware Implementation of Gating Units for Long Short-Term Memory Network Using Hyperbolic Sine Functions

被引:0
|
作者
Joseph, Tresa [1 ]
Bindiya, T. S. [1 ]
机构
[1] Natl Inst Technol Calicut, Dept Elect & Commun Engn, Kozhikode 673601, India
关键词
Hardware; Long short term memory; Computer architecture; Recurrent neural networks; Mathematical models; Field programmable gate arrays; Convergence; Activation functions (AFs); long short-term memory (LSTM); recurrent neural networks (RNNs);
D O I
10.1109/TCAD.2023.3293045
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes a new activation function (AF) sinh(beta x) +sinh(-1)(beta x) called combined hyperbolic Sine (comb-H-sine) to replace existing AFS like sigma and tanh in long short-term memory (LSTM) neural networks. The comb-H-sine function is implemented using purely combinational architectures with a 16-bit data width with fixed-point representation, resulting in improved accuracy. Both software and hardware modeling are used to investigate the proposed architecture. Compared to prior works on sigma and tanh functions, the hardware for the comb-H-sine function shows significant improvements in power consumption, number of cells, cell area, and delay. The proposed LSTM architecture using comb-H-sine outperforms existing AFs in terms of power delay product and accuracy on various datasets.
引用
收藏
页码:5141 / 5145
页数:5
相关论文
共 50 条
  • [1] An FPGA Implementation of a Long Short-Term Memory Neural Network
    Ferreira, Joao Canas
    Fonseca, Jose
    2016 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG16), 2016,
  • [2] FPGA Hardware Implementation of Efficient Long Short-Term Memory Network Based on Construction Vector Method
    Li, Tengfei
    Gu, Shenshen
    IEEE ACCESS, 2023, 11 : 122357 - 122367
  • [3] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [4] A COMPACT AND CONFIGURABLE LONG SHORT-TERM MEMORY NEURAL NETWORK HARDWARE ARCHITECTURE
    Chen, Kewei
    Huang, Leilei
    Li, Minjiang
    Zeng, Xiaoyang
    Fan, Yibo
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 4168 - 4172
  • [5] Reference evapotranspiration estimation using long short-term memory network and wavelet-coupled long short-term memory network
    Long, Xiaoxu
    Wang, Jiandong
    Gong, Shihong
    Li, Guangyong
    Ju, Hui
    IRRIGATION AND DRAINAGE, 2022, 71 (04) : 855 - 881
  • [6] Recognising formula entailment using long short-term memory network
    Pathak, Amarnath
    Pakray, Partha
    JOURNAL OF INFORMATION SCIENCE, 2023,
  • [7] Human activity classification using long short-term memory network
    Welhenge, Anuradhi Malshika
    Taparugssanagorn, Attaphongse
    SIGNAL IMAGE AND VIDEO PROCESSING, 2019, 13 (04) : 651 - 656
  • [8] HUMAN ACTIVITY RECOGNITION USING LONG SHORT-TERM MEMORY NETWORK
    Warunsin, Kulwarun
    Promjiraprawat, Kamphol
    Chitsobhuk, Orachat
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2023, 19 (03): : 973 - 990
  • [9] Automatic Fall Detection Using Long Short-Term Memory Network
    Magalhaes, Carlos
    Ribeiro, Joao
    Leite, Argentina
    Pires, E. J. Solteiro
    Pavao, Joao
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 359 - 371
  • [10] Predicting Solar Flares Using a Long Short-term Memory Network
    Liu, Hao
    Liu, Chang
    Wang, Jason T. L.
    Wang, Haimin
    ASTROPHYSICAL JOURNAL, 2019, 877 (02):