Lightweight Stepless Super-Resolution of Remote Sensing Images via Saliency-Aware Dynamic Routing Strategy

被引:2
|
作者
Wu, Hanlin [1 ]
Ni, Ning [1 ]
Zhang, Libao [1 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Computational modeling; Feature extraction; Routing; Computational complexity; Task analysis; Superresolution; Interpolation; Lightweight; remote sensing; saliency analysis; stepless; super-resolution (SR); SPARSE REPRESENTATION; ATTENTION; ACCURATE; NETWORK;
D O I
10.1109/TGRS.2023.3236624
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning-based algorithms have greatly improved the performance of remote sensing image (RSI) super-resolution (SR). However, increasing network depth and parameters cause a huge burden of computing and storage. Directly reducing the depth or width of existing models results in a large performance drop. We observe that the SR difficulty of different regions in an RSI varies greatly, and existing methods use the same deep network to process all regions in an image, resulting in a waste of computing resources. In addition, existing SR methods generally predefine integer scale factors and cannot perform stepless SR, i.e., a single model can deal with any potential scale factor. Retraining the model on each scale factor wastes considerable computing resources and model storage space. To address the above problems, we propose a saliency-aware dynamic routing network (SalDRN) for lightweight and stepless SR of RSIs. First, we introduce visual saliency as an indicator of region-level SR difficulty and integrate a lightweight saliency detector into the SalDRN to capture pixel-level visual characteristics. Then, we devise a saliency-aware dynamic routing strategy that employs path selection switches to adaptively select feature extraction paths of appropriate depth according to the SR difficulty of subimage patches. Finally, we propose a novel lightweight stepless upsampling module whose core is an implicit feature function for realizing mapping from low-resolution feature space to high-resolution feature space. Comprehensive experiments verify that the SalDRN can achieve a good tradeoff between performance and complexity. The code is available at https://github.com/hanlinwu/SalDRN.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Unsupervised Remote Sensing Image Super-Resolution Guided by Visible Images
    Zhang, Zili
    Tian, Yan
    Li, Jianxiang
    Xu, Yiping
    REMOTE SENSING, 2022, 14 (06)
  • [32] Research on super-resolution reconstruction of remote sensing images: a comprehensive review
    Liu, Hui
    Qian, Yurong
    Zhong, Xiwu
    Chen, Long
    Yang, Guangqi
    OPTICAL ENGINEERING, 2021, 60 (10)
  • [33] Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis
    Hu, Mao-Gui
    Wang, Jin-Feng
    Ge, Yong
    SENSORS, 2009, 9 (11) : 8669 - 8683
  • [34] Flow-based super-resolution reconstruction of remote sensing images
    Ren Shubo
    Meng Qian
    Wu Zuan
    CHINESE SPACE SCIENCE AND TECHNOLOGY, 2022, 42 (06) : 99 - 106
  • [35] DEM super-resolution assisted by remote sensing images content feature
    Gao, Bing
    Yue, Linwei
    2024 5TH INTERNATIONAL CONFERENCE ON GEOLOGY, MAPPING AND REMOTE SENSING, ICGMRS 2024, 2024, : 122 - 126
  • [36] Collaborative Network for Super-Resolution and Semantic Segmentation of Remote Sensing Images
    Zhang, Qian
    Yang, Guang
    Zhang, Guixu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Super-resolution reconstruction of infrared remote sensing images with radiation fidelity
    Shi W.
    Guo C.
    Tong X.
    Tian Y.
    Cao W.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (02): : 107 - 113
  • [38] Vehicle Detection in Remote Sensing Images Leveraging on Simultaneous Super-Resolution
    Ji, Hong
    Gao, Zhi
    Mei, Tiancan
    Ramesh, Bharath
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (04) : 676 - 680
  • [39] Multiscale Residual Dense Network for the Super-Resolution of Remote Sensing Images
    Kong, Dezhi
    Gu, Lingjia
    Li, Xiaofeng
    Gao, Fang
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62 : 1 - 12
  • [40] Multiscale Residual Dense Network for the Super-Resolution of Remote Sensing Images
    Kong, Dezhi
    Gu, Lingjia
    Li, Xiaofeng
    Gao, Fang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62