Artificial confocal microscopy for deep label-free imaging

被引:33
|
作者
Chen, Xi [1 ,9 ]
Kandel, Mikhail E. [1 ,10 ]
He, Shenghua [2 ]
Hu, Chenfei [1 ,3 ]
Lee, Young Jae [1 ,4 ]
Sullivan, Kathryn [5 ]
Tracy, Gregory [6 ]
Chung, Hee Jung [1 ,4 ,6 ,7 ]
Kong, Hyun Joon [1 ,5 ,7 ,8 ]
Anastasio, Mark [1 ,5 ]
Popescu, Gabriel [1 ,3 ,5 ,7 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63110 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[4] Univ Illinois, Neurosci Program, Urbana, IL USA
[5] Univ Illinois, Dept Bioengn, Urbana, IL USA
[6] Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL USA
[7] Univ Illinois, Carl Woese Inst Genom Biol, Urbana, IL USA
[8] Univ Illinois, Chem & Biomol Engn, Urbana, IL USA
[9] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[10] Groq, Mountain View, CA USA
基金
美国国家科学基金会;
关键词
PHASE; MODEL;
D O I
10.1038/s41566-022-01140-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Wide-field microscopy of optically thick specimens typically features reduced contrast due to spatial cross-talk, in which the signal at each point in the field of view is the result of a superposition from neighbouring points that are simultaneously illuminated. In 1955, Marvin Minsky proposed confocal microscopy as a solution to this problem. Today, laser scanning confocal fluorescence microscopy is broadly used due to its high depth resolution and sensitivity, but comes at the price of photobleaching, chemical and phototoxicity. Here we present artificial confocal microscopy (ACM) to achieve confocal-level depth sectioning, sensitivity and chemical specificity non-destructively on unlabelled specimens. We equipped a commercial laser scanning confocal instrument with a quantitative phase imaging module, which provides optical path-length maps of the specimen in the same field of view as the fluorescence channel. Using pairs of phase and fluorescence images, we trained a convolution neural network to translate the former into the latter. The training to infer a new tag is very practical as the input and ground truth data are intrinsically registered and the data acquisition is automated. The ACM images present much stronger depth sectioning than the input (phase) images, enabling us to recover confocal-like tomographic volumes of microspheres, hippocampal neurons in culture, and three-dimensional liver cancer spheroids. By training on nucleus-specific tags, ACM allows for segmenting individual nuclei within dense spheroids for both cell counting and volume measurements. In summary, ACM can provide quantitative, dynamic data, non-destructively from thick samples while chemical specificity is recovered computationally.
引用
收藏
页码:250 / +
页数:17
相关论文
共 50 条
  • [31] Multiphoton microscopy for label-free multicolor imaging of peripheral nerve
    Rishoj, Lars
    Hernandez, Ivan Coto
    Ramachandran, Siddharth
    Jowett, Nate
    JOURNAL OF BIOMEDICAL OPTICS, 2022, 27 (05)
  • [32] Digital Histopathological Discrimination of Label-Free Tumoral Tissues by Artificial Intelligence Phase-Imaging Microscopy
    Luis Ganoza-Quintana, Jose
    Luis Arce-Diego, Jose
    Fanjul-Velez, Felix
    SENSORS, 2022, 22 (23)
  • [33] Label-free imaging of the kinetics of round-shaped immune cells in the human cornea using in vivo confocal microscopy
    Colorado, Luisa H.
    Dando, Samantha J.
    Harkin, Damien G.
    Edwards, Katie
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2021, 49 (06): : 628 - 630
  • [34] Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy
    Salehi, H.
    Derely, L.
    Vegh, A-G.
    Durand, J-C.
    Gergely, C.
    Larroque, C.
    Fauroux, M-A.
    Cuisinier, F. J. G.
    APPLIED PHYSICS LETTERS, 2013, 102 (11)
  • [35] Label-free imaging of the regenerating human periodontal ligament and gingival tissue using second harmonic generation confocal microscopy
    Cerutis, D. Roselyn
    Nichols, Michael
    Jenzer, Andrew
    Khan, Shakeel
    McVaney, Timothy
    Miyamoto, Takanari
    Kaldahl, Wayne
    FASEB JOURNAL, 2014, 28 (01):
  • [36] Label-free hematology analysis using deep-ultraviolet microscopy
    Ojaghi, Ashkan
    Carrazana, Gabriel
    Caruso, Christina
    Abbas, Asad
    Myers, David R.
    Lam, Wilbur A.
    Robles, Francisco E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (26) : 14779 - 14789
  • [37] Label-free Identification of Neutropenia Using Deep-Ultraviolet Microscopy
    Ojaghi, Ashkan
    Robles, Francisco E.
    OPTICAL DIAGNOSTICS AND SENSING XIX: TOWARD POINT-OF-CARE DIAGNOSTICS, 2019, 10885
  • [38] Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning
    Wu, Yichen
    Calis, Ayfer
    Luo, Yi
    Chen, Cheng
    Lutton, Maxwell
    Rivenson, Yair
    Lin, Xing
    Koydemir, Hatice Ceylan
    Zhang, Yibo
    Wang, Hongda
    Gorocs, Zoltan
    Ozcan, Aydogan
    ACS PHOTONICS, 2018, 5 (11): : 4617 - 4627
  • [39] It's free imaging - label-free, that is
    Marx, Vivien
    NATURE METHODS, 2019, 16 (12) : 1209 - 1212
  • [40] It’s free imaging — label-free, that is
    Vivien Marx
    Nature Methods, 2019, 16 : 1209 - 1212