Artificial confocal microscopy for deep label-free imaging

被引:33
|
作者
Chen, Xi [1 ,9 ]
Kandel, Mikhail E. [1 ,10 ]
He, Shenghua [2 ]
Hu, Chenfei [1 ,3 ]
Lee, Young Jae [1 ,4 ]
Sullivan, Kathryn [5 ]
Tracy, Gregory [6 ]
Chung, Hee Jung [1 ,4 ,6 ,7 ]
Kong, Hyun Joon [1 ,5 ,7 ,8 ]
Anastasio, Mark [1 ,5 ]
Popescu, Gabriel [1 ,3 ,5 ,7 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63110 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[4] Univ Illinois, Neurosci Program, Urbana, IL USA
[5] Univ Illinois, Dept Bioengn, Urbana, IL USA
[6] Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL USA
[7] Univ Illinois, Carl Woese Inst Genom Biol, Urbana, IL USA
[8] Univ Illinois, Chem & Biomol Engn, Urbana, IL USA
[9] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[10] Groq, Mountain View, CA USA
基金
美国国家科学基金会;
关键词
PHASE; MODEL;
D O I
10.1038/s41566-022-01140-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Wide-field microscopy of optically thick specimens typically features reduced contrast due to spatial cross-talk, in which the signal at each point in the field of view is the result of a superposition from neighbouring points that are simultaneously illuminated. In 1955, Marvin Minsky proposed confocal microscopy as a solution to this problem. Today, laser scanning confocal fluorescence microscopy is broadly used due to its high depth resolution and sensitivity, but comes at the price of photobleaching, chemical and phototoxicity. Here we present artificial confocal microscopy (ACM) to achieve confocal-level depth sectioning, sensitivity and chemical specificity non-destructively on unlabelled specimens. We equipped a commercial laser scanning confocal instrument with a quantitative phase imaging module, which provides optical path-length maps of the specimen in the same field of view as the fluorescence channel. Using pairs of phase and fluorescence images, we trained a convolution neural network to translate the former into the latter. The training to infer a new tag is very practical as the input and ground truth data are intrinsically registered and the data acquisition is automated. The ACM images present much stronger depth sectioning than the input (phase) images, enabling us to recover confocal-like tomographic volumes of microspheres, hippocampal neurons in culture, and three-dimensional liver cancer spheroids. By training on nucleus-specific tags, ACM allows for segmenting individual nuclei within dense spheroids for both cell counting and volume measurements. In summary, ACM can provide quantitative, dynamic data, non-destructively from thick samples while chemical specificity is recovered computationally.
引用
收藏
页码:250 / +
页数:17
相关论文
共 50 条
  • [1] Artificial confocal microscopy for deep label-free imaging
    Xi Chen
    Mikhail E. Kandel
    Shenghua He
    Chenfei Hu
    Young Jae Lee
    Kathryn Sullivan
    Gregory Tracy
    Hee Jung Chung
    Hyun Joon Kong
    Mark Anastasio
    Gabriel Popescu
    Nature Photonics, 2023, 17 : 250 - 258
  • [2] Label-Free Live-Cell Imaging with Confocal Raman Microscopy
    Klein, Katharina
    Gigler, Alexander M.
    Aschenbrenne, Thomas
    Monetti, Roberto
    Bunk, Wolfram
    Jamitzky, Ferdinand
    Morfill, Gregor
    Stark, Robert W.
    Schlegel, Juergen
    BIOPHYSICAL JOURNAL, 2012, 102 (02) : 360 - 368
  • [3] High-resolution label-free imaging of tissue morphology with confocal phase microscopy
    Schnell, Martin
    Gupta, Shravan
    Wrobel, Tomasz P.
    Drage, Michael G.
    Bhargava, Rohit
    Carney, P. Scott
    OPTICA, 2020, 7 (09): : 1173 - 1180
  • [4] Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy
    Aaron J Schain
    Robert A Hill
    Jaime Grutzendler
    Nature Medicine, 2014, 20 : 443 - 449
  • [5] Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy
    Schain, Aaron J.
    Hill, Robert A.
    Grutzendler, Jaime
    NATURE MEDICINE, 2014, 20 (04) : 443 - +
  • [6] Artificial Intelligence for Cell Segmentation, Event Detection, and Tracking for Label-Free Microscopy Imaging
    Maddalena, Lucia
    Antonelli, Laura
    Albu, Alexandra
    Hada, Aroj
    Guarracino, Mario Rosario
    ALGORITHMS, 2022, 15 (09)
  • [7] In vivo label-free confocal imaging of the deep mouse brain with long-wavelength illumination
    Xia, Fei
    Wu, Chunyan
    Sinefeud, David
    Li, Bo
    Qin, Yifan
    Xu, Chris
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (12): : 6545 - 6555
  • [8] Label-free microscopy
    Evanko, Daniel
    NATURE METHODS, 2010, 7 (01) : 36 - 36
  • [9] Label-free microscopy
    Daniel Evanko
    Nature Methods, 2010, 7 (1) : 36 - 36
  • [10] Hybrid nonlinear photoacoustic and reflectance confocal microscopy for label-free subcellular imaging with a single light source
    Mattison, Scott P.
    Mondragon, Eli
    Kaunas, Roland
    Applegate, Brian E.
    OPTICS LETTERS, 2017, 42 (19) : 4028 - 4031