Dynamic characteristics of carbonate saline soil under freeze-thaw cycles in the seaonal frozen soil region

被引:2
|
作者
Cui, Gaohang [1 ]
Liu, Zhiqiang [1 ]
Ma, Shu Xian [1 ]
Cheng, Zhuo [1 ]
机构
[1] Univ Harbin, Dept of Civil Engn, Harbin 150040, Peoples R China
关键词
Freeze-thaw cycles; Carbonate saline soil; Dynamic shear modulus; Damping ratio; FINE-GRAINED SOIL; SHEAR-STRENGTH; MECHANICAL-PROPERTIES; MIGRATION; BEHAVIOR; WATER;
D O I
10.1016/j.aej.2023.09.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The occurrence of road damage, such as frost heave and thaw settlement, is highly likely in saline soil subgrades in seasonally frozen areas due to traffic loads and freeze-thaw cycles (FTC). In this regard, a low-temperature dynamic cyclic triaxial test was conducted to investigate the dynamic characteristics of carbonate saline soil under traffic load. The study explores the impact of salt content (SC) and the number of FTC on the backbone curves, the dynamic shear modulus (TDSM), and the damping ratio (TDR) characteristics of saline soil. An improved H-D model was employed to derive the dynamic backbone curve, and TDSM and TDR empirical formulas were established.The study's results show that the backbone curves of saline soil exhibit typical nonlinear and strain-hardening characteristics. Additionally, a higher salt content or more FTC result in a smaller TDSM and a larger TDR of the remodeled saline soil. TDSM shows an inverted "S" shape with an increase in cyclic shear strain, and the decay rate of TDSM increases when the cyclic shear strain is greater than 10-4 and less than 10-3. The decay rate of TDSM decreases and approaches a constant value after the cyclic shear strain exceeds 10-3. The decay of TDSM of low-salt soils (salt content less than 0.5%) mainly occurs in the first six freeze-thaw cycles. In contrast, the decay of TDSM of high-salt soils (salt content more than 0.5%) remains highly dependent on the number of FTC. Furthermore, TDR show an flat "S" shape with an increase of cyclic shear strain. The rate of increase in TDR of low-salt soil decelerates after six FTC, while the rate of increase in TDR of high-salt soil decelerates after nine FTC. Finally, empirical formulas for TDSM and TDR were established by varying the fitting parameters. The results of this study provide a useful reference for engineering projects in regions that encounter seasonal freezing. These findings will assist engineers in the design and construction of structures that can withstand the detrimental effects of traffic loads and FTC.
引用
收藏
页码:384 / 394
页数:11
相关论文
共 50 条
  • [31] Dynamic parameters of lime-improved saline soil under freeze-thaw and different temperatures
    Xu Y.-L.
    Dong Z.-J.
    Zhou J.-S.
    Tan H.-L.
    Zhou J.-H.
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2022, 44 (01): : 90 - 97
  • [32] Fractal analysis of cracking in a clayey soil under freeze-thaw cycles
    Lu, Yang
    Liu, Sihong
    Weng, Liping
    Wang, Liujiang
    Li, Zhuo
    Xu, Lei
    ENGINEERING GEOLOGY, 2016, 208 : 93 - 99
  • [33] Dynamic deformation and meso-structure of coarse-grained saline soil under cyclic loading with freeze-thaw cycles
    Wan, Qi
    Yang, Xiaohua
    Wang, Rui
    Zhu, Zhiheng
    FRONTIERS IN EARTH SCIENCE, 2024, 12
  • [34] Effect and Mechanism of Freeze-Thaw Cycles on Static and Dynamic Characteristics of Expandable Polystyrene Lightweight Soil
    Jiang, Ping
    Zhou, Xuhui
    Wang, Wei
    Li, Na
    Huang, Xianwen
    Pu, Shaoyun
    Asefa, Mulugeta Belete
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2024, 24 (02)
  • [35] Investigation of Freeze-Thaw Resistance of Stabilized Saline Soil
    Zhou, Yongxiang
    Guan, Qingfeng
    Yan, Peiyu
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [36] Effects of irrigation on soil temperature and soil freeze-thaw characteristics during seasonal freeze-thaw period
    Zheng, X. (zxq6818@sina.com), 1600, Chinese Society of Agricultural Machinery (44):
  • [37] Testing and Evaluation on Dynamic Response of a New Modified Soil Subgrade under Freeze-Thaw Cycles
    Wei, Haibin
    Han, Leilei
    Zhang, Yangpeng
    Li, Ziqi
    Han, Shuanye
    JOURNAL OF TESTING AND EVALUATION, 2021, 49 (03) : 2065 - 2081
  • [38] Effect of freeze-thaw cycles on carbon stocks of saline-alkali paddy soil
    Tang, Jie
    Liang, Shuang
    Li, Zhaoyang
    Zhang, Hao
    Lou, Yun
    Wang, Jingjing
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2016, 62 (12) : 1640 - 1653
  • [39] The Study of Influence of Freeze-Thaw Cycles on Silty Sand in Seasonally Frozen Soil Regions
    Yu, Zhijie
    Fang, Jianhong
    Xu, Anhua
    Zhou, Wenjun
    GEOFLUIDS, 2022, 2022
  • [40] Response of soil constituents to freeze-thaw cycles in wetland soil solution
    Yu, Xiaofei
    Zou, Yuanchun
    Jiang, Ming
    Lu, Xianguo
    Wang, Guoping
    SOIL BIOLOGY & BIOCHEMISTRY, 2011, 43 (06): : 1308 - 1320