Exploring Quantum Simpson-Type Inequalities for Convex Functions: A Novel Investigation

被引:2
|
作者
Iftikhar, Sabah [1 ]
Awan, Muhammad Uzair [2 ]
Budak, Hueseyin [3 ]
机构
[1] Xiamen Univ Malaysia, Dept Math, Sepang 43900, Malaysia
[2] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan
[3] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
Simpson's integral inequality; convex functions; quantum calculus; integral inequalities;
D O I
10.3390/sym15071312
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study seeks to derive novel quantum variations of Simpson's inequality by primarily utilizing the convexity characteristics of functions. Additionally, the study examines the credibility of the obtained results through the presentation of relevant numerical examples and graphs.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] On Some New Simpson's Formula Type Inequalities for Convex Functions in Post-Quantum Calculus
    Vivas-Cortez, Miguel J.
    Ali, Muhammad Aamir
    Qaisar, Shahid
    Sial, Ifra Bashir
    Jansem, Sinchai
    Mateen, Abdul
    SYMMETRY-BASEL, 2021, 13 (12):
  • [42] ON INEQUALITIES OF SIMPSON?S TYPE FOR CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
    Kara, Hasan
    Budak, Huseyin
    Ali, Muhammad Aamir
    Hezenci, Fatih
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (03): : 806 - 825
  • [43] On fractional Simpson type integral inequalities for co-ordinated convex functions
    Sundas Khan
    Hüseyin Budak
    Journal of Inequalities and Applications, 2022
  • [44] New Quantum Boundaries for q-Simpson's Type Inequalities for Co-Ordinated Convex Functions
    Alp, Necmettin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    FILOMAT, 2022, 36 (12) : 3919 - 3940
  • [45] Weighted Simpson-like type inequalities for quasi-convex functions
    Ayed, Hamida
    Meftah, Badreddine
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (02) : 313 - 322
  • [46] On fractional Simpson type integral inequalities for co-ordinated convex functions
    Khan, Sundas
    Budak, Huseyin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [47] Fractional 3/8-Simpson type inequalities for differentiable convex functions
    Nasri, Nassima
    Meftah, Badreddine
    Moumen, Abdelkader
    Saber, Hicham
    AIMS MATHEMATICS, 2024, 9 (03): : 5349 - 5375
  • [48] Some new inequalities of Simpson type for strongly s-convex functions
    Hua, Ju
    Xi, Bo-Yan
    Qi, Feng
    AFRIKA MATEMATIKA, 2015, 26 (5-6) : 741 - 752
  • [49] ON SOME INEQUALITIES OF SIMPSON'S TYPE VIA h-CONVEX FUNCTIONS
    Tunc, Mevlut
    Yildiz, Cetin
    Ekinci, Alper
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 309 - 317
  • [50] SEVERAL NEW INTEGRAL INEQUALITIES OF THE SIMPSON TYPE FOR (α, s, m)-CONVEX FUNCTIONS
    Yin, Hong-Ping
    Liu, Xi-Min
    Wang, Jing-Yu
    Qi, Feng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2896 - 2905