Multispectral LiDAR Point Cloud Segmentation for Land Cover Leveraging Semantic Fusion in Deep Learning Network

被引:7
|
作者
Xiao, Kai [1 ]
Qian, Jia [2 ]
Li, Teng [3 ,4 ]
Peng, Yuanxi [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp Sci & Technol, State Key Lab High Performance Comp, Changsha 410073, Peoples R China
[2] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200082, Peoples R China
[3] Natl Univ Def Technol, Beijing Inst Adv Study, Beijing 100020, Peoples R China
[4] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
multispectral LiDAR point cloud; deep learning network; semantic segmentation; FACE REPRESENTATION; 2-DIMENSIONAL PCA; CLASSIFICATION;
D O I
10.3390/rs15010243
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Multispectral LiDAR technology can simultaneously acquire spatial geometric data and multispectral wavelength intensity information, which can provide richer attribute features for semantic segmentation of point cloud scenes. However, due to the disordered distribution and huge number of point clouds, it is still a challenging task to accomplish fine-grained semantic segmentation of point clouds from large-scale multispectral LiDAR data. To deal with this situation, we propose a deep learning network that can leverage contextual semantic information to complete the semantic segmentation of large-scale point clouds. In our network, we work on fusing local geometry and feature content based on 3D spatial geometric associativity and embed it into a backbone network. In addition, to cope with the problem of redundant point cloud feature distribution found in the experiment, we designed a data preprocessing with principal component extraction to improve the processing capability of the proposed network on the applied multispectral LiDAR data. Finally, we conduct a series of comparative experiments using multispectral LiDAR point clouds of real land cover in order to objectively evaluate the performance of the proposed method compared with other advanced methods. With the obtained results, we confirm that the proposed method achieves satisfactory results in real point cloud semantic segmentation. Moreover, the quantitative evaluation metrics show that it reaches state-of-the-art.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Deep-Learning-Based Point Cloud Semantic Segmentation: A Survey
    Zhang, Rui
    Wu, Yichao
    Jin, Wei
    Meng, Xiaoman
    ELECTRONICS, 2023, 12 (17)
  • [22] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUD
    Malinverni, E. S.
    Pierdicca, R.
    Paolanti, M.
    Martini, M.
    Morbidoni, C.
    Matrone, F.
    Lingua, A.
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 735 - 742
  • [23] A Review of Deep Learning-Based Semantic Segmentation for Point Cloud
    Zhang, Jiaying
    Zhao, Xiaoli
    Chen, Zheng
    Lu, Zhejun
    IEEE ACCESS, 2019, 7 : 179118 - 179133
  • [24] A Point-Wise LiDAR and Image Multimodal Fusion Network (PMNet) for Aerial Point Cloud 3D Semantic Segmentation
    Poliyapram, Vinayaraj
    Wang, Weimin
    Nakamura, Ryosuke
    REMOTE SENSING, 2019, 11 (24)
  • [25] Multilevel intuitive attention neural network for airborne LiDAR point cloud semantic segmentation
    Wang, Ziyang
    Chen, Hui
    Liu, Jing
    Qin, Jiarui
    Sheng, Yehua
    Yang, Lin
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 132
  • [26] Classification of Airborne Multispectral Lidar Point Clouds for Land Cover Mapping
    Ekhtari, Nima
    Glennie, Craig
    Fernandez-Diaz, Juan Carlos
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (06) : 2068 - 2078
  • [27] SEMANTIC KNOWLEDGE EMBEDDING DEEP LEARNING NETWORK FOR LAND COVER CLASSIFICATION
    Chen, Jiage
    Du, Xiao
    Zhang, Junhui
    Wan, Yongtao
    Zhao, Wenzhi
    GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 85 - 90
  • [28] Weakly supervised point cloud semantic segmentation with the fusion of heterogeneous network features
    Niu, Yingchun
    Yin, Jianqin
    IMAGE AND VISION COMPUTING, 2024, 142
  • [29] Point attention network for point cloud semantic segmentation
    Dayong REN
    Zhengyi WU
    Jiawei LI
    Piaopiao YU
    Jie GUO
    Mingqiang WEI
    Yanwen GUO
    Science China(Information Sciences), 2022, 65 (09) : 99 - 112
  • [30] Point attention network for point cloud semantic segmentation
    Ren, Dayong
    Wu, Zhengyi
    Li, Jiawei
    Yu, Piaopiao
    Guo, Jie
    Wei, Mingqiang
    Guo, Yanwen
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (09)