Subspace multi-regularized non-negative matrix factorization for hyperspectral unmixing

被引:4
|
作者
Li, Songtao [1 ]
Li, Weigang [1 ]
Cai, Lian [2 ]
Li, Yang [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, 947 Heping Rd, Wuhan 430081, Peoples R China
[2] Hunan Univ, Sch Econ & Business, 109 Shijiachong Rd, Changsha 410079, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral unmixing; Nonnegative matrix factorization; Multi regularized; Subspace structure; TENSOR FACTORIZATION; SPARSE NMF; MODEL; CLASSIFICATION; REPRESENTATION;
D O I
10.1007/s10489-022-04121-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral unmixing (HU) is an important task in hyperspectral image (HSI) processing, which estimates endmembers and their corresponding abundances. Generally, the unmixing process of HSI can be approximated by a linear mixing model. Since each type of material only appears in a few pixels in HSI, sparse non-negative matrix factorization (NMF) and its extensions are regarded as the main unmixing methods. However, due to the lack of consideration of the spatial distribution in the local domain, most HU methods lose the inducing effect of spatial correlation in the decomposition process, and ignore the correlation of the real distribution of different materials in different images. In this paper, a novel NMF unmixing model is proposed, called SMRNMF, which learns multiple subspace structures from the original hyperspectral images and combines them into a sparse NMF framework to improve the performance of the model. Firstly, subspace clustering is embedded into the sparse NMF model. According to the spatial correlation of the original data, two similarity matrices are learned, which make full use of the local correlations between the pixels of the original data. Secondly, based on the self-expression characteristics of the data in the subspace, the global similarity pixel graph matrix is embedded into the model to construct a self-expression regularizer to improve the unmixing performance. Finally, a smoothing matrix is cleverly constructed and embedded in the model to overcome the adverse effects of noisy information in the abundance images. Experiments on several simulated and real HSI data sets show that our method has superior performance compared with the existing methods.
引用
收藏
页码:12541 / 12563
页数:23
相关论文
共 50 条
  • [41] Dual regularized multi-view non-negative matrix factorization for clustering
    Luo, Peng
    Peng, Jinye
    Guan, Ziyu
    Fan, Jianping
    NEUROCOMPUTING, 2018, 294 : 1 - 11
  • [42] Spatial feature extraction non-negative tensor factorization for hyperspectral unmixing
    Wang, Jin-Ju
    Wang, Ding-Cheng
    Huang, Ting-Zhu
    Huang, Jie
    APPLIED MATHEMATICAL MODELLING, 2022, 103 : 18 - 35
  • [43] Non-Negative Matrix Factorization for Hyperspectral Anomaly Detection
    Aizenshtein, Sofia
    Abergel, Ido
    Mailler, Moshe
    Segal, Gili
    Rotman, Stanley R.
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXVI, 2020, 11392
  • [44] Constrained non-negative matrix factorization algorithm combined with spatial homogeneous area analysis for hyperspectral unmixing
    Tian, Haifeng
    Zhan, Ying
    Wang, Lu
    Hu, Dan
    Yu, Xianchuan
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (01)
  • [45] Robust Adaptive Graph Regularized Non-Negative Matrix Factorization
    He, Xiang
    Wang, Qi
    Li, Xuelong
    IEEE ACCESS, 2019, 7 : 83101 - 83110
  • [46] Graph Regularized Sparse Non-Negative Matrix Factorization for Clustering
    Deng, Ping
    Li, Tianrui
    Wang, Hongjun
    Wang, Dexian
    Horng, Shi-Jinn
    Liu, Rui
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 910 - 921
  • [47] Graph Regularized Non-negative Matrix Factorization By Maximizing Correntropy
    Li, Le
    Yang, Jianjun
    Zhao, Kaili
    Xu, Yang
    Zhang, Honggang
    Fan, Zhuoyi
    JOURNAL OF COMPUTERS, 2014, 9 (11) : 2570 - 2579
  • [48] Convergence Analysis of Graph Regularized Non-Negative Matrix Factorization
    Yang, Shangming
    Yi, Zhang
    Ye, Mao
    He, Xiaofei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (09) : 2151 - 2165
  • [49] Graph regularized sparse non-negative matrix factorization for clustering
    Deng, Ping
    Wang, Hongjun
    Li, Tianrui
    Zhao, Hui
    Wu, Yanping
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 987 - 994
  • [50] Manifold regularized non-negative matrix factorization with label information
    Li, Huirong
    Zhang, Jiangshe
    Wang, Changpeng
    Liu, Junmin
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (02)