An optimal transport-based characterization of convex order

被引:0
|
作者
Wiesel, Johannes [1 ]
Zhang, Erica [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Wean Hall,5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Columbia Univ, Dept Stat, 1255 Amsterdam Ave, New York, NY 10027 USA
来源
DEPENDENCE MODELING | 2023年 / 11卷 / 01期
关键词
convex order; optimal transport; Wasserstein distance; model-independent finance; MARTINGALE OPTIMAL TRANSPORT; PROBABILITY-MEASURES; DUALITY; BOUNDS;
D O I
10.1515/demo-2023-0102
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For probability measures mu, nu, and rho, define the cost functionals C(mu, rho) := sup(pi is an element of Pi(mu, rho)) integral < x, y >pi(dx, dy) and C(nu, rho) := sup(pi is an element of Pi(nu, rho)) integral < x, y >pi(dx, dy), where <center dot,center dot > denotes the scalar product and Pi(center dot,center dot) is the set of couplings. We show that two probability measures mu and nu on R-d with finite first moments are in convex order (i.e., mu <=(c) nu) iff C(mu, rho) <= C(nu, rho) holds for all probability measures rho on R-d with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of integral fd nu - integral fd mu over all 1-Lipschitz functions f, which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Ruschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Optimal Transport-Based One-Shot Federated Learning for Artificial Intelligence of Things
    Chiang, Yi-Han
    Terai, Koudai
    Chiang, Tsung-Wei
    Lin, Hai
    Ji, Yusheng
    Lui, John C. S.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 2166 - 2180
  • [22] Transport-based imaging in random media
    Bal, Guillaume
    Ren, Kui
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (06) : 1738 - 1762
  • [23] OPTIMAL TRANSPORT-BASED FULL WAVEFORM INVERSION FOR NONDESTRUCTIVE EVALUATION USING ULTRASONIC ARRAYS
    Rossatol, Daniel
    Passarin, Thiago A. R.
    Guarneri, Giovanni A.
    Pires, Gustavo P.
    Pipa, Daniel R.
    PROCEEDINGS OF 2024 51ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, QNDE2024, 2024,
  • [24] Dilepton Production in Transport-based Approaches
    Weil, Janus
    Endres, Stephan
    van Hees, Hendrik
    Bleicher, Marcus
    Mosel, Ulrich
    HOT QUARKS 2014: WORKSHOP FOR YOUNG SCIENTISTS ON THE PHYSICS OF ULTRARELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS, 2015, 612
  • [25] CLOT: CONTRASTIVE LEARNING-DRIVEN AND OPTIMAL TRANSPORT-BASED TRAINING FOR SIMULTANEOUS CLUSTERING
    Aburidi, Mohammed
    Marcia, Roummel
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1515 - 1519
  • [26] Optimal Transport-Based Deep Domain Adaptation Approach for Fault Diagnosis of Rotating Machine
    Liu, Zhao-Hua
    Jiang, Lin-Bo
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [27] Explainable Legal Case Matching via Inverse Optimal Transport-based Rationale Extraction
    Yu, Weijie
    Sun, Zhongxiang
    Xu, Jun
    Dong, Zhenhua
    Chen, Xu
    Xu, Hongteng
    Wen, Ji-Rong
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 657 - 668
  • [28] Optimal Transport-based Identity Matching for Identity-invariant Facial Expression Recognition
    Kim, Daeha
    Song, Byung Cheol
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [29] Optimal Transport-Based Deep Domain Adaptation Approach for Fault Diagnosis of Rotating Machine
    Liu, Zhao-Hua
    Jiang, Lin-Bo
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71 : 13 - 13
  • [30] Optimal transport-based fusion of two-stream convolutional networks for action recognitionOptimal transport-based fusion of two-stream. . .S. Yenduri et al.
    Sravani Yenduri
    Madhavi Gudavalli
    Gayathri C
    Applied Intelligence, 2025, 55 (7)