An optimal transport-based characterization of convex order

被引:0
|
作者
Wiesel, Johannes [1 ]
Zhang, Erica [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Wean Hall,5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Columbia Univ, Dept Stat, 1255 Amsterdam Ave, New York, NY 10027 USA
来源
DEPENDENCE MODELING | 2023年 / 11卷 / 01期
关键词
convex order; optimal transport; Wasserstein distance; model-independent finance; MARTINGALE OPTIMAL TRANSPORT; PROBABILITY-MEASURES; DUALITY; BOUNDS;
D O I
10.1515/demo-2023-0102
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For probability measures mu, nu, and rho, define the cost functionals C(mu, rho) := sup(pi is an element of Pi(mu, rho)) integral < x, y >pi(dx, dy) and C(nu, rho) := sup(pi is an element of Pi(nu, rho)) integral < x, y >pi(dx, dy), where <center dot,center dot > denotes the scalar product and Pi(center dot,center dot) is the set of couplings. We show that two probability measures mu and nu on R-d with finite first moments are in convex order (i.e., mu <=(c) nu) iff C(mu, rho) <= C(nu, rho) holds for all probability measures rho on R-d with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of integral fd nu - integral fd mu over all 1-Lipschitz functions f, which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Ruschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Efficient and Effective Optimal Transport-Based Biclustering
    Fettal, Chakib
    Labiod, Lazhar
    Nadif, Mohamed
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [2] Optimal Transport-Based Polar Interpolation of Directional Fields
    Solomon, Justin
    Vaxman, Amir
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):
  • [3] Convergence Properties of Optimal Transport-Based Temporal Networks
    Baptista, Diego
    De Bacco, Caterina
    COMPLEX NETWORKS & THEIR APPLICATIONS X, VOL 1, 2022, 1015 : 578 - 592
  • [4] Convergence properties of optimal transport-based temporal hypergraphs
    Diego Baptista
    Caterina De Bacco
    Applied Network Science, 8
  • [5] Convergence properties of optimal transport-based temporal hypergraphs
    Baptista, Diego
    De Bacco, Caterina
    APPLIED NETWORK SCIENCE, 2023, 8 (01)
  • [6] An Unbalanced Optimal Transport-Based Approach for Robust Dictionary Learning
    Wang, Shengjia
    Wang, Zhiguo
    Zhao, Xi-Le
    Shen, Xiaojing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025,
  • [7] Optimal Transport-Based Patch Matching for Image Style Transfer
    Li, Jie
    Xiang, Yong
    Wu, Hao
    Yao, Shaowen
    Xu, Dan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5927 - 5940
  • [8] OTAdapt: Optimal Transport-based Approach For Unsupervised Domain Adaptation
    Thanh-Dat Truong
    Chappa, Ravi Teja N. V. S.
    Xuan-Bac Nguyen
    Ngan Le
    Dowling, Ashley P. G.
    Khoa Luu
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2850 - 2856
  • [9] An Optimal Transport-Based Restoration Method for Q-Ball Imaging
    Vogt, Thomas
    Lellmann, Jan
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2017, 2017, 10302 : 271 - 282
  • [10] Optimal Transport-based Alignment of Learned Character Representations for String Similarity
    Tam, Derek
    Monath, Nicholas
    Kobren, Ari
    Traylor, Aaron
    Das, Rajarshi
    McCallum, Andrew
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 5907 - 5917