A Robust Hybrid Classical and Quantum Model for Short-Term Wind Speed Forecasting

被引:1
|
作者
Hong, Ying-Yi [1 ]
Arce, Christine Joy E. [1 ]
Huang, Tsung-Wei [2 ]
机构
[1] Chung Yuan Christian Univ, Dept Elect Engn, Taoyuan 32023, Taiwan
[2] Chung Yuan Christian Univ, Quantum Informat Ctr, Taoyuan 32023, Taiwan
关键词
Deep learning model; quantum neural network; robust design; wind speed forecasting; NEURAL-NETWORK; POWER; MACHINE;
D O I
10.1109/ACCESS.2023.3308053
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Power scheduling by power utilities is more difficult than in the past decades because of a high penetration of renewable power generation, such as wind power generation, with highly uncertain and stochastic characteristics. To address this issue, a highly accurate technique for forecasting wind speed must be developed. In this work, a hybrid classical-quantum model is developed to exploit the advantages of two powerful models, a long short-term memory (LSTM) and a quantum neural network. Quantum neural networks, also known as parameterized quantum circuits, act like machine learning models but with greater expressive power. They comprise quantum gates that apply the principles of quantum mechanics in order to achieve quantum advantage. Additionally, to obtain a robust design that is insensitive to seasonal changes in the data, the Taguchi method is used to set up orthogonal experiments to set the hyperparameters of the proposed model. Historical data from seven sites in various countries (Taiwan, the Philippines, China, and South Korea) are used to forecast 24-hour-ahead wind speeds at the Fuhai wind farm near Taiwan. Comparative simulation results show that the proposed robust hybrid classical-quantum model outperforms current state-of-art models, such as classical nonlinear autoregressive network, random forest, extreme gradient boosting, support vector regression, and classical LSTM.
引用
下载
收藏
页码:90811 / 90824
页数:14
相关论文
共 50 条
  • [1] Short-term wind speed forecasting using a hybrid model
    Jiang, Ping
    Wang, Yun
    Wang, Jianzhou
    ENERGY, 2017, 119 : 561 - 577
  • [2] Short-term wind speed forecasting based on a hybrid model
    Zhang, Wenyu
    Wang, Jujie
    Wang, Jianzhou
    Zhao, Zengbao
    Tian, Meng
    APPLIED SOFT COMPUTING, 2013, 13 (07) : 3225 - 3233
  • [3] A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting
    Lv, Shengxiang
    Wang, Lin
    Wang, Sirui
    ENERGIES, 2023, 16 (04)
  • [4] Developing a hybrid probabilistic model for short-term wind speed forecasting
    Zhang, Xiaobo
    APPLIED INTELLIGENCE, 2023, 53 (01) : 728 - 745
  • [5] Developing a hybrid probabilistic model for short-term wind speed forecasting
    Xiaobo Zhang
    Applied Intelligence, 2023, 53 : 728 - 745
  • [6] A Hybrid Approach for Short-Term Forecasting of Wind Speed
    Tatinati, Sivanagaraja
    Veluvolu, Kalyana C.
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [7] A Hybrid Method for Short-Term Wind Speed Forecasting
    Zhang, Jinliang
    Wei, YiMing
    Tan, Zhong-fu
    Wang, Ke
    Tian, Wei
    SUSTAINABILITY, 2017, 9 (04):
  • [8] A hybrid system for short-term wind speed forecasting
    He, Qingqing
    Wang, Jianzhou
    Lu, Haiyan
    APPLIED ENERGY, 2018, 226 : 756 - 771
  • [9] Short-term Wind Speed Forecasting with ARIMA Model
    Radziukynas, Virginijus
    Klementavicius, Arturas
    2014 55TH INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2014, : 145 - 149
  • [10] A Hybrid Nonlinear Forecasting Strategy for Short-Term Wind Speed
    Zhao, Xin
    Wei, Haikun
    Li, Chenxi
    Zhang, Kanjian
    ENERGIES, 2020, 13 (07)