A Deep Learning Approach to Using Wearable Seismocardiography (SCG) for Diagnosing Aortic Valve Stenosis and Predicting Aortic Hemodynamics Obtained by 4D Flow MRI

被引:2
|
作者
Ebrahimkhani, Mahmoud [1 ]
Johnson, Ethan M. I. [1 ]
Sodhi, Aparna [2 ]
Robinson, Joshua D. [1 ,2 ,3 ]
Rigsby, Cynthia K. [1 ,2 ,3 ]
Allen, Bradly D. [1 ]
Markl, Michael [1 ,4 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Radiol, Chicago, IL 60611 USA
[2] Ann & Robert H Lurie Childrens Hosp, Chicago, IL 60611 USA
[3] Northwestern Univ, Feinberg Sch Med, Dept Pediat, Chicago, IL 60611 USA
[4] Northwestern Univ, McCormick Sch Engn, Dept Biomed Engn, Evanston, IL 60208 USA
关键词
4D flow MRI; Cardiac MRI; Convolutional neural networks (CNN); Continuous wavelet transform (CWT); Deep learning; Seismocardiography (SCG); WALL SHEAR-STRESS; BLOOD-FLOW; CONTRAST; QUANTIFICATION; TIME; HEART; VELOCITY;
D O I
10.1007/s10439-023-03342-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we explored the use of deep learning for the prediction of aortic flow metrics obtained using 4-dimensional (4D) flow magnetic resonance imaging (MRI) using wearable seismocardiography (SCG) devices. 4D flow MRI provides a comprehensive assessment of cardiovascular hemodynamics, but it is costly and time-consuming. We hypothesized that deep learning could be used to identify pathological changes in blood flow, such as elevated peak systolic velocity ( V max) in patients with heart valve diseases, from SCG signals. We also investigated the ability of this deep learning technique to differentiate between patients diagnosed with aortic valve stenosis (AS), non-AS patients with a bicuspid aortic valve (BAV), non-AS patients with a mechanical aortic valve (MAV), and healthy subjects with a normal tricuspid aortic valve (TAV). In a study of 77 subjects who underwent same-day 4D flow MRI and SCG, we found that the V max values obtained using deep learning and SCGs were in good agreement with those obtained by 4D flow MRI. Additionally, subjects with non-AS TAV, non-AS BAV, non-AS MAV, and AS could be classified with ROC-AUC (area under the receiver operating characteristic curves) values of 92%, 95%, 81%, and 83%, respectively. This suggests that SCG obtained using low-cost wearable electronics may be used as a supplement to 4D flow MRI exams or as a screening tool for aortic valve disease.
引用
收藏
页码:2802 / 2811
页数:10
相关论文
共 50 条
  • [21] Evaluating the disease progression of pediatric bicuspid aortic valve patients using 4D flow MRI data
    Michael J Rose
    Kelly B Jarvis
    Alex J Barker
    Susanne Schnell
    Bradley D Allen
    Joshua D Robinson
    Michael Markl
    Cynthia K Rigsby
    Journal of Cardiovascular Magnetic Resonance, 18 (Suppl 1)
  • [22] Evaluating a Phase-Specific Approach to Aortic Flow: A 4D Flow MRI Study
    Ramaekers, Mitch J. F. G.
    Westenberg, Jos J. M.
    Venner, Max F. G. H. M.
    Juffermans, Joe F.
    van Assen, Hans C.
    te Kiefte, Bastiaan J. C.
    Adriaans, Bouke P.
    Lamb, Hildo J.
    Wildberger, Joachim E.
    Schalla, Simon
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 59 (03) : 1056 - 1067
  • [23] Assessment of aortic valve stenosis using 4D flow MR: comparison to 2D PC MR and TTE
    Adriaans, B.
    Westenberg, J. J. M.
    Van Cauteren, Y. J. M.
    Bekkers, S. C. A. M.
    Wildberger, J. E.
    Schalla, S.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2019, 20 : 401 - 401
  • [24] Valvular and ascending aortic hemodynamics of the On-X aortic valved conduit by same-day echocardiography and 4D flow MRI
    Lee, Jeesoo
    Huh, Hyungkyu
    Scott, Michael B.
    Elbaz, Mohammed S. M.
    Puthumana, Jyothy J.
    Mccarthy, Patrick
    Malaisrie, S. Christopher
    Markl, Michael
    Thomas, James D.
    Barker, Alex J.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [25] Multiyear Interval Changes in Aortic Wall Shear Stress in Patients with Bicuspid Aortic Valve Assessed by 4D Flow MRI
    Maroun, Anthony
    Scott, Michael B.
    Catania, Roberta
    Berhane, Haben
    Jarvis, Kelly
    Allen, Bradley D.
    Barker, Alex J.
    Markl, Michael
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (06) : 2580 - 2589
  • [26] The effect of aortic valve replacement on 4D flow-measured flow displacement in patients with bicuspid and tri-leaflet aortic valves with severe aortic stenosis
    Richards, C.
    Alfuhied, A.
    Parker, A.
    Aslam, S.
    Debiec, R.
    Mccann, G. P.
    Singh, A.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [27] Restoration of physiologic hemodynamics in the ascending aorta following aortic valve Rreplacement: a 4D flow MR study
    Eric J Keller
    S C Malaisrie
    Jane Kruse
    Pim van Ooij
    Edouard Semaan
    Patrick McCarthy
    James C Carr
    Michael Markl
    Alex J Barker
    Jeremy D Collins
    Journal of Cardiovascular Magnetic Resonance, 18 (Suppl 1)
  • [28] Validation of numerical simulation methods in aortic arch using 4D Flow MRI
    Shohei Miyazaki
    Keiichi Itatani
    Toyoki Furusawa
    Teruyasu Nishino
    Masataka Sugiyama
    Yasuo Takehara
    Satoshi Yasukochi
    Heart and Vessels, 2017, 32 : 1032 - 1044
  • [29] Validation of numerical simulation methods in aortic arch using 4D Flow MRI
    Miyazaki, Shohei
    Itatani, Keiichi
    Furusawa, Toyoki
    Nishino, Teruyasu
    Sugiyama, Masataka
    Takehara, Yasuo
    Yasukochi, Satoshi
    HEART AND VESSELS, 2017, 32 (08) : 1032 - 1044
  • [30] Aortic arch dilation in bicuspid aortic valve patients is related to altered hemodynamics and wall shear stress: a 4D flow CMR study
    Dux-Santoy, L.
    Guala, A.
    Rodriguez-Palomares, J.
    Teixido-Tura, G.
    Ruiz-Munoz, A.
    Granato, C.
    Villalva, N.
    Valente, F.
    Dentamaro, I.
    Sao-Aviles, A.
    Galian, L.
    Gutierrez, L.
    Fernandez, R.
    Gonzalez-Alujas, T.
    Garcia-Dorado, D.
    Evangelista, A.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2018, 48 : 61 - 61