The effects of inbreeding on stress resistance of the Pacific oyster Crassostrea gigas at different temperatures and salinities

被引:1
|
作者
Fang, Jia-Feng [1 ]
Li, Qi [1 ,2 ,3 ,4 ]
机构
[1] Ocean Univ China, Key Lab Mariculture, Minist Educ, Qingdao, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao, Peoples R China
[3] Ocean Univ China, Key Lab Mariculture, Minist Educ, Qingdao 266003, Peoples R China
[4] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China
关键词
Inbreeding depression; Pacific oyster; stress resistance; physiological parameter; enzyme activity; MUSSEL MYTILUS-GALLOPROVINCIALIS; OXYGEN-CONSUMPTION; FEEDING PHYSIOLOGY; CATALASE ACTIVITY; IMMUNE-RESPONSE; DEPRESSION; TOLERANCE; GROWTH; CLAM; VARIABILITY;
D O I
10.1080/17451000.2023.2224025
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The Pacific oyster (Crassostrea gigas) is a commercially important shellfish widely cultured worldwide. Understanding the effect of inbreeding on C. gigas is critical to the long-term feasibility of breeding programmes, especially when selected lines are developed in hatcheries with limited effective population sizes. The effect of inbreeding on stress resistance in C. gigas remains to be explored. The present study evaluated the physiological and immune responses to different temperatures (16-36 & DEG;C) and salinities (20-40 psu) in an inbreeding line and a wild population of C. gigas. Two physiological parameters, including ammonia-N excretion rate (AER) and oxygen consumption rate (OCR), and three enzyme activities including superoxide dismutase activity (SOD), catalase activity (CAT), and contents of malondialdehyde (MDA) were measured on day 14 of the temperature and salinity exposure. Compared with the wild population, the physiological parameters (AER and OCR) were significantly lower, and the enzyme activities (SOD, CAT, and MDA) were significantly higher in the inbreeding line at suboptimal temperatures or salinities. These results showed that inbreeding has negative effects on stress resistance in C. gigas. In addition, multiple groups with different inbreeding levels would be needed to quantify the effects of inbreeding on stress resistance in C. gigas.
引用
收藏
页码:249 / 260
页数:12
相关论文
共 50 条
  • [41] Transcriptomic response of the Pacific oyster Crassostrea gigas to hypoxia
    Sussarellu, Rossana
    Fabioux, Caroline
    Le Moullac, Gilles
    Fleury, Elodie
    Moraga, Dario
    MARINE GENOMICS, 2010, 3 (3-4) : 133 - 143
  • [42] PROCESS OF WOUND HEALING IN PACIFIC OYSTER CRASSOSTREA GIGAS
    DESVOIGNE, DM
    SPARKS, AK
    JOURNAL OF INVERTEBRATE PATHOLOGY, 1968, 12 (01) : 53 - +
  • [43] Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia
    Wrange, Anna-Lisa
    Valero, Johanna
    Harkestad, Lisbeth S.
    Strand, Oivind
    Lindegarth, Susanne
    Christensen, Helle Torp
    Dolmer, Per
    Kristensen, Per Sand
    Mortensen, Stein
    BIOLOGICAL INVASIONS, 2010, 12 (06) : 1453 - 1458
  • [44] Heterosis for yield and crossbreeding of the Pacific oyster Crassostrea gigas
    Hedgecock, Dennis
    Davis, Jonathan P.
    AQUACULTURE, 2007, 272 : S17 - S29
  • [45] Sources of dietary cadmium to the Pacific oyster Crassostrea gigas
    Christie, J. C.
    Bendell, L. I.
    MARINE ENVIRONMENTAL RESEARCH, 2009, 68 (03) : 97 - 105
  • [46] Adaptive Evolution Patterns in the Pacific Oyster Crassostrea gigas
    Kai Song
    Shiyong Wen
    Guofan Zhang
    Marine Biotechnology, 2019, 21 : 614 - 622
  • [47] Sterol metabolism of Pacific oyster (Crassostrea gigas) spat
    Knauer, J
    Kerr, RG
    Lindley, D
    Southgate, PC
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1998, 119 (01): : 81 - 84
  • [48] Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia
    Wrange, Anna-Lisa
    Valero, Johanna
    Harkestad, Lisbeth S.
    Strand, Oivind
    Lindegarth, Susanne
    Christensen, Helle Torp
    Dolmer, Per
    Kristensen, Per Sand
    Mortensen, Stein
    BIOLOGICAL INVASIONS, 2010, 12 (05) : 1145 - 1152
  • [49] CONSTRUCTION OF A CYTOGENETIC MAP FOR THE PACIFIC OYSTER (CRASSOSTREA GIGAS)
    Wang, Shan
    Gaffney, Patrick M.
    Hedgecock, Dennis
    Bao, Zhenmin
    Guo, Ximing
    JOURNAL OF SHELLFISH RESEARCH, 2011, 30 (02): : 561 - 561
  • [50] XENOBIOTIC BIOTRANSFORMATION IN THE PACIFIC OYSTER (CRASSOSTREA-GIGAS)
    SCHLENK, D
    BUHLER, DR
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-PHARMACOLOGY TOXICOLOGY & ENDOCRINOLOGY, 1989, 94 (02): : 469 - 475