Porous SnO2/Co3O4 nanocubes anchored onto reduced graphene oxide as a high-performance anode for lithium-ion batteries

被引:8
|
作者
Chen, Liming [1 ]
Tang, Bin [1 ]
Li, Haoyue [1 ]
Wang, Bohan [2 ]
Huang, Bin [1 ]
机构
[1] Guilin Univ Technol, Coll Chem & Bioengn, Guangxi Key Lab Electrochem & Magneto Chem Funct M, Guilin 541004, Peoples R China
[2] Guilin Univ Technol, Coll Mat Sci & Engn, Guilin 541004, Peoples R China
关键词
Heterostructure; Graphene; Tin -based oxide; Anodes; lithium -ion batteries; SNO2; NANOCRYSTALS; RATE CAPABILITY;
D O I
10.1016/j.ssi.2023.116241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microstructure design and constructing heterojunctions are of great value for transition metal oxides to realize a high-performance electrode for lithium-ion batteries (LIBs). In this paper, monodisperse porous SnO2/Co3O4 nanocubes anchored onto graphene is fabricated. The SnO2 and Co3O4 phases in the composite are detected by Xray diffraction. Scanning electron microscopy and transmission electron microscopy are employed to gain insight into the microstructure of the nanocubes, which are composed of tightly contacted SnO2 and Co3O4 particles with a size range from 100 to 200 nm. X-ray photoelectron spectroscopy reveals that SnO2 and Co3O4 are chemically bound together. Four samples of pure SnO2, pure Co3O4, SnO2/Co3O4 nanocubes, and SnO2/Co3O4/rGO composite are compared in electrochemical properties. The excellent rate performance, cycling stability, and reversible specific capacity result from the synergistic effect of the unique microstructure and the function of the high conductive graphene framework in Li ion storage.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Robust graphene oxide-coated porous biochar skeleton constructed on SnO2 nanoparticles as high-performance composite anode for lithium-ion batteries
    Nie, Shu-Qing
    Miao, Chang
    Li, Guo-Cheng
    Xin, Yu
    Xiao, Wei
    RARE METALS, 2025,
  • [32] Ultrafine SnO2 nanocrystals anchored graphene composites as anode material for lithium-ion batteries
    Zhang, Jun
    Chang, Ling
    Wang, Fengxian
    Xie, Dong
    Su, Qingmei
    Du, Gaohui
    MATERIALS RESEARCH BULLETIN, 2015, 68 : 120 - 125
  • [34] Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode
    Li, Zhongtao
    Wu, Guiliang
    Deng, Shenzhen
    Wang, Shujing
    Wang, Yuankun
    Zhou, Jingyan
    Liu, Shuiping
    Wu, Wenting
    Wu, Mingbo
    CHEMICAL ENGINEERING JOURNAL, 2016, 283 : 1435 - 1442
  • [35] Reduced graphene oxide/porous Si composite as anode for high-performance lithium ion batteries
    Tao, Hua-Chao
    Yang, Xue-Lin
    Zhang, Lu-Lu
    Ni, Shi-Bing
    IONICS, 2015, 21 (03) : 617 - 622
  • [36] Graphene-Supported Mesoporous SnO2 Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries
    Zhang, Nan
    Xia, Min
    Ge, Changchun
    NANO, 2020, 15 (09)
  • [37] Graphene/Fe2O3/SnO2 Ternary Nanocomposites as a High-Performance Anode for Lithium Ion Batteries
    Xia, Guofeng
    Li, Ning
    Li, Deyu
    Liu, Ruiqing
    Wang, Chen
    Li, Qing
    Lu, Xujie
    Spendelow, Jacob S.
    Zhang, Junliang
    Wu, Gang
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (17) : 8607 - 8614
  • [38] Reduced graphene oxide/porous Si composite as anode for high-performance lithium ion batteries
    Hua-Chao Tao
    Xue-Lin Yang
    Lu-Lu Zhang
    Shi-Bing Ni
    Ionics, 2015, 21 : 617 - 622
  • [39] Monodispersed FeCO3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries
    Xu, Donghui
    Liu, Weijian
    Zhang, Congcong
    Cai, Xin
    Chen, Wenyan
    Fang, Yueping
    Yu, Xiaoyuan
    JOURNAL OF POWER SOURCES, 2017, 364 : 359 - 366
  • [40] Fe3O4/SnO2/rGO ternary composite as a high-performance anode material for lithium-ion batteries
    Wang, Yukun
    Zhang, Hanyin
    Hu, Renzong
    Liu, Jiangwen
    van Ree, Teunis
    Wang, Haihui
    Yang, Lichun
    Zhu, Min
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 693 : 1174 - 1179