???????Review: Inelastic Constitutive Modeling: Polycrystalline Materials

被引:0
|
作者
Baig, Mirza [1 ]
Owusu-Danquah, Josiah [1 ]
Campbell, Anne A. [2 ]
Duffy, Stephen F. [1 ]
机构
[1] Cleveland State Univ, Washkewicz Coll Engn, Dept Civil & Environm Engn, Cleveland Hts, OH 44115 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
关键词
continuum mechanics; constitutive modeling; time dependent behavior; inelastic deformations; IRRADIATION-INDUCED CREEP; UNIFIED PHENOMENOLOGICAL MODEL; ELASTIC-PLASTIC MATERIALS; TYPE-316; STAINLESS-STEEL; STRESS-STRAIN RELATIONS; YIELD SURFACE; SCALE ANALYSIS; DEFORMATION; BEHAVIOR; EQUATIONS;
D O I
10.3390/ma16093564
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This article provides a literature review that details the development of inelastic constitutive modeling as it relates to polycrystalline materials. This review distinguishes between inelastic constitutive models that account for nonlinear behavior at the microstructural level, time-independent classic plasticity models, and time-dependent unified models. Particular emphasis is placed on understanding the underlying theoretical framework for unified viscoplasticity models where creep and classical plasticity behavior are considered the result of applied boundary conditions instead of separable rates representing distinct physical mechanisms. This article establishes a clear understanding of the advantages of the unified approach to improve material modeling. This review also discusses recent topics in constitutive modeling that offer new techniques that bridge the gap between the microstructure and the continuum.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Modeling of irradiation hardening of polycrystalline materials
    Li, Dongsheng
    Zbib, Hussein
    Garmestani, Hamid
    Sun, Xin
    Khaleel, Mohammad
    COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (08) : 2496 - 2501
  • [22] Modeling void growth in polycrystalline materials
    Lebensohn, Ricardo A.
    Escobedo, Juan P.
    Cerreta, Ellen K.
    Dennis-Koller, Darcie
    Bronkhorst, Curt A.
    Bingert, John F.
    ACTA MATERIALIA, 2013, 61 (18) : 6918 - 6932
  • [23] Constitutive modeling of porous viscoelastic materials
    Xu, F.
    Sofronis, P.
    Aravas, N.
    Meyer, S.
    European Journal of Mechanics, A/Solids, 1600, 26 (06): : 936 - 955
  • [24] Constitutive modeling for nanoceramic materials sintering
    Xue, F.
    Ma, J.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, VOL 5, NOS 4 AND 5, 2006, 5 (4-5): : 611 - +
  • [25] Constitutive modeling of porous hyperelastic materials
    Danielsson, M
    Parks, DM
    Boyce, MC
    MECHANICS OF MATERIALS, 2004, 36 (04) : 347 - 358
  • [26] Multiscale constitutive modeling of polymer materials
    Valavala, Pavan K.
    Odegard, Gregory M.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 1: ADVANCES IN AEROSPACE TECHNOLOGY, 2008, : 179 - 183
  • [27] Modeling polycrystalline materials with elongated grains
    Perez, Irvin
    de Farias, Marcio Muniz
    Castro, Manuel
    Rosello, Roberto
    Morfa, Carlos Recarey
    Medina, Liosber
    Onate, E.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 118 (03) : 121 - 131
  • [28] Constitutive modeling of porous viscoelastic materials
    Xu, F.
    Sofronis, P.
    Aravas, N.
    Meyer, S.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2007, 26 (06) : 936 - 955
  • [29] Remarks on Constitutive Modeling of Granular Materials
    Massoudi, Mehrdad
    ENG, 2023, 4 (04): : 2856 - 2878
  • [30] HYPOELASTICITY AND PLASTICITY APPROACHES TO CONSTITUTIVE MODELING OF INELASTIC BEHAVIOR OF SOILS
    MROZ, Z
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1980, 4 (01) : 45 - 55