Coherently parallel fiber-optic distributed acoustic sensing using dual Kerr soliton microcombs

被引:18
|
作者
Li, Jian-Ting [1 ,2 ]
Chang, Bing [1 ]
Du, Jun-Ting [1 ]
Tan, Teng [1 ]
Geng, Yong [1 ]
Zhou, Heng [1 ]
Liang, Yu-Pei [1 ]
Zhang, Hao [1 ]
Yan, Guo-Feng [2 ]
Ma, Ling-Mei [2 ]
Ran, Zeng-Ling [1 ]
Wang, Zi-Nan [1 ]
Yao, Bai-Cheng [1 ]
Rao, Yun-Jiang [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Fiber Opt Res Ctr, Key Lab Opt Fiber Sensing & Commun, Educ Minist China, Chengdu 611731, Peoples R China
[2] Res Ctr Opt Fiber Sensing, Zhejiang Lab, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金;
关键词
PHI-OTDR; SENSITIVITY; NOISE;
D O I
10.1126/sciadv.adf8666
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fiber-optic distributed acoustic sensing (DAS) has proven to be a revolutionary technology for the detection of seismic and acoustic waves with ultralarge scale and ultrahigh sensitivity, and is widely used in oil/gas industry and intrusion monitoring. Nowadays, the single-frequency laser source in DAS becomes one of the bottlenecks limiting its advance. Here, we report a dual-comb-based coherently parallel DAS concept, enabling linear superposition of sensing signals scaling with the comb-line number to result in unprecedented sensitivity enhancement, straightforward fading suppression, and high-power Brillouin-free transmission that can extend the detection distance considerably. Leveraging 10-line comb pairs, a world-class detection limit of 560 f epsilon/root Hz@1 kHz with 5 m spatial resolution is achieved. Such a combination of dual-comb metrology and DAS technology may open an era of extremely sensitive DAS at the f epsilon/root Hz level, leading to the creation of next-generation distributed geophones and sonars.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Remote Drone Detection and Localization with Fiber-Optic Microphones and Distributed Acoustic Sensing
    Fang, Jian
    Li, Yaowen
    Ji, Philip N.
    Wang, Ting
    2022 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2022,
  • [22] Linking Distributed and Integrated Fiber-Optic Sensing
    Bowden, Daniel C.
    Fichtner, Andreas
    Nikas, Thomas
    Bogris, Adonis
    Simos, Christos
    Smolinski, Krystyna
    Koroni, Maria
    Lentas, Konstantinos
    Simos, Iraklis
    Melis, Nikolaos S.
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (16)
  • [23] Fully Distributed Fiber-Optic Biological Sensing
    Wang, Dorothy Y.
    Wang, Yunmiao
    Han, Ming
    Gong, Jianmin
    Wang, Anbo
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (21) : 1553 - 1555
  • [24] Distributed Fiber-Optic Sensing and Integrity Monitoring
    Glisic, Branko
    Inaudi, Daniele
    TRANSPORTATION RESEARCH RECORD, 2010, (2150) : 96 - 102
  • [25] Real-Time Well-Integrity Monitoring Using Fiber-Optic Distributed Acoustic Sensing
    Raab, T.
    Reinsch, T.
    Cifuentes, S. R. Aldaz
    Henninges, J.
    SPE JOURNAL, 2019, 24 (05): : 1997 - 2009
  • [26] Ultrasonic Lamb wave detection using a fiber-optic quasi-distributed acoustic sensing system
    Liu, Chaozhu
    Fan, Xinyu
    Ma, Lin
    He, Zuyuan
    OPTICS LETTERS, 2024, 49 (20) : 5842 - 5845
  • [27] Characterizing Thunder-Induced Ground Motions Using Fiber-Optic Distributed Acoustic Sensing Array
    Zhu, Tieyuan
    Stensrud, David J.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (23) : 12810 - 12823
  • [28] Microseismic monitoring using a fiber-optic distributed acoustic sensor array
    Verdon, James P.
    Horne, Steve A.
    Clarke, Andrew
    Stork, Anna L.
    Baird, Alan F.
    Kendall, J. -Michael
    GEOPHYSICS, 2020, 85 (03) : KS89 - KS99
  • [29] Monitoring Pipeline Leakage Using Fiber-Optic Distributed Acoustic Sensor
    Wang Chen
    Liu Qingwen
    Chen Dian
    Li He
    Liang Wenbo
    He Zuyuan
    ACTA OPTICA SINICA, 2019, 39 (10)
  • [30] Detecting gas pipeline leaks in sandy soil with fiber-optic distributed acoustic sensing
    Chen, Zhuo
    Zhang, Cheng-Cheng
    Shi, Bin
    Zhang, Yan
    Wang, Zheng
    Wang, Hao
    Xie, Tao
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2023, 141