Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

被引:22
|
作者
Chen, Jianxiong [1 ,2 ]
Ren, Fuhao [1 ,2 ]
Yin, Ningning [1 ,2 ]
Mao, Jie [1 ,2 ]
机构
[1] Ningxia Univ, Coll Chem & Chem Engn, State Key Lab High Efficiency Utilizat Coal & Gree, Yinchuan 750021, Peoples R China
[2] Ningxia Univ, Sch Chem & Chem Engn, Yinchuan 750021, Peoples R China
关键词
Electrostatic interactions; Hydrogen bonding; Self; -assembly; Charge injection barriers; BORON-NITRIDE NANOSHEETS; POLYMER NANOCOMPOSITES; EXFOLIATION; CONSTANT; DENSITY;
D O I
10.1016/j.cej.2023.147581
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polymer dielectrics, serving as integral components in electrostatic capacitors, must meet the escalating demands for electrical energy storage and conversion in harsh environments. However, the current enhancement of breakdown strength in polymer composite materials often relies on intricate nanostructure designs or inorganic deposition methods, which result in high production costs, slow processing, and hinder industrial scalability. Here, we present an economically efficient and easily implementable surface modification approach. This method induces the self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions, thereby enhancing the high-temperature electrical insulation and energy storage performance of polymer dielectrics. At room temperature, the breakdown strength of the BNNScoated polyetherimide (PEI) significantly increased to 544 MV/m, representing a 100 MV/m improvement compared to pure PEI. At elevated temperatures (200 degrees C), the organic insulator achieved a high breakdown strength of 439 MV/m and a high energy density of 2.59 J/cm3. The tangential orientation of the nanosheets effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer. This work provides a novel avenue for the design of high-performance polymer dielectrics for high-temperature energy storage through surface engineering.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Flexible mica films for high-temperature energy storage
    Xu, Xinwei
    Liu, Wenlong
    Li, Yi
    Wang, Yifei
    Yuan, Qibin
    Chen, Jie
    Ma, Rong
    Xiang, Feng
    Wang, Hong
    JOURNAL OF MATERIOMICS, 2018, 4 (03) : 173 - 178
  • [32] Wide Bandgap Heterostructured Dielectric Polymers by Rapid Photo-Crosslinking for High-Temperature Capacitive Energy Storage
    Pei, Zhantao
    Liu, Yijie
    Zhao, Wutong
    Yang, Caiyi
    Li, Shengtao
    Jiang, Pingkai
    Chen, Jie
    Huang, Xingyi
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (02)
  • [33] Cubic Pyrochlore Bismuth Zinc Niobate Thin Films for High-Temperature Dielectric Energy Storage
    Michael, Elizabeth K.
    Trolier-Mckinstry, Susan
    Journal of the American Ceramic Society, 2015,
  • [34] Cubic Pyrochlore Bismuth Zinc Niobate Thin Films for High-Temperature Dielectric Energy Storage
    Michael, Elizabeth K.
    Trolier-McKinstry, Susan
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2015, 98 (04) : 1223 - 1229
  • [35] High-temperature polymer dielectric films with excellent energy storage performance utilizing inorganic outerlayers
    Liu, Xue-Jie
    Cheng, Meng
    Zhang, Yiyi
    Xing, Yunqi
    Dang, Zhi-Min
    Zha, Jun-Wei
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 245
  • [36] Enhanced high-temperature capacitive energy storage in polyetherimide dielectrics through dense crosslinked network structures
    Wei, Yuhao
    Yang, Luhai
    Wang, Cong
    Zhu, Zhenyu
    Dai, Yuancong
    Qin, Hongmei
    Xiong, Chuanxi
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [37] Simultaneous Inhibition of Conduction Loss and Enhancement of Polarization Intensity of Polyetherimide Dielectrics for High-Temperature Capacitive Energy Storage
    Liu, Zeren
    Yang, Minhao
    Wang, Zepeng
    Zhao, Yanlong
    Wang, Wei
    Dang, Zhi-Min
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (51): : 11550 - 11557
  • [38] Self-assembly CuO surface decorated with NiAl2O4 for high-temperature thermochemical energy storage: Excellent performance and strong interaction mechanism
    Deng, Jiali
    Gu, Changdong
    Xu, Haoran
    Xiao, Gang
    JOURNAL OF ENERGY STORAGE, 2023, 59
  • [39] Surface ion-activated polymer composite dielectrics for superior high-temperature capacitive energy storage
    Yang, Minhao
    Zhao, Yanlong
    Wang, Zepeng
    Yan, Huarui
    Liu, Zeren
    Li, Qi
    Dang, Zhi-Min
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (04) : 1592 - 1602
  • [40] High-temperature capacitive energy stroage in polymer nanocomposites through nanoconfinement
    Li, Xinhui
    Liu, Bo
    Wang, Jian
    Li, Shuxuan
    Zhen, Xin
    Zhi, Jiapeng
    Zou, Junjie
    Li, Bei
    Shen, Zhonghui
    Zhang, Xin
    Zhang, Shujun
    Nan, Ce-Wen
    NATURE COMMUNICATIONS, 2024, 15 (01)