Effect of Optical Interference on External Quantum Efficiency of PbS Quantum Dot Photodiode

被引:0
|
作者
Kang, Jang-Won [1 ,2 ]
Song, Jung Hoon [1 ,2 ]
机构
[1] Mokpo Natl Univ, Dept Semicond & Appl Phys, Muan 58554, South Korea
[2] Mokpo Natl Univ, Semicond Nanotechnol Res Inst, Muan 58554, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Lead sulfide quantum dots; Optical interference; Photodiode; External quantum efficiency;
D O I
10.5757/ASCT.2023.32.6.162
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sensors that detect light in the shortwave infrared (SWIR) region are increasingly being used in various automation systems because they are harmless to the human optic nerve. In this study, we developed a sensor for SWIR using colloidal quantum dots (CQDs) and assessed the external quantum efficiency and light absorption characteristics of the device in relation to the thickness of the CQD film, which functions as the active layer. To fabricate photodiodes (PDs), the conductivity of the CQD thin film was increased using a ligand exchange process. This conductive CQD film had a high refractive index, which led to optical interference in the PDs. Consequently, the light absorption in the PD depended on the thickness of the CQD film. We confirmed this phenomenon using the transfer matrix method after analyzing the optical properties of the conductive CQD films using ellipsometry. Our findings indicated that to effectively detect light in regions such as SWIR, the optical interference and tunable absorption must be considered in PD designs by tuning the CQD size.
引用
收藏
页码:162 / 164
页数:3
相关论文
共 50 条
  • [21] Interpenetrated Inorganic Hybrids for Efficiency Enhancement of PbS Quantum Dot Solar Cells
    Tan, Furui
    Qu, Shengchun
    Jiang, Qiwei
    Liu, Junpeng
    Wang, Zhijie
    Li, Fumin
    Yue, Gentian
    Li, Shengjun
    Chen, Chong
    Zhang, Weifeng
    Wang, Zhanguo
    ADVANCED ENERGY MATERIALS, 2014, 4 (17)
  • [22] Optical absorption cross section and quantum efficiency of a single silicon quantum dot
    Sangghaleh, F.
    Bruhn, B.
    Sychugov, I.
    Linnros, J.
    NANOTECHNOLOGY VI, 2013, 8766
  • [23] Quantum Interference in a Room Temperature InAs/InP Quantum Dot Semiconductor Optical Amplifier
    Khanonkin, Igor
    Mishra, Akhilesh K.
    Karni, Ouri
    Reithmaier, Johann P.
    Eisenstein, Gadi
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [24] Ultrafast Colloidal Quantum Dot Infrared Photodiode
    Xu, Qiwei
    Meng, Lingju
    Sinha, Kaustubh
    Chowdhury, Farsad, I
    Hu, Jun
    Wang, Xihua
    ACS PHOTONICS, 2020, 7 (05): : 1297 - 1303
  • [25] Damping of coherent oscillations in a quantum dot photodiode
    Villas-Bôas, JM
    Ulloa, SE
    Govorov, AO
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 26 (1-4): : 337 - 341
  • [26] Interference effect in multilevel transport through a quantum dot
    Aikawa, H
    Kobayashi, K
    Sano, A
    Katsumoto, S
    Iye, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (12) : 3235 - 3238
  • [27] Demonstration of the quantum dot avalanche photodiode (QDAP)
    Ramirez, David A.
    Shao, Jiayi
    Hayat, Majeed M.
    Krishna, Sanjay
    ADVANCED PHOTON COUNTING TECHNIQUES III, 2009, 7320
  • [28] Midwave infrared quantum dot avalanche photodiode
    Ramirez, David A.
    Shao, Jiayi
    Hayat, Majeed M.
    Krishna, Sanjay
    APPLIED PHYSICS LETTERS, 2010, 97 (22)
  • [29] Effect of an inhomogeneous external magnetic field on a quantum-dot quantum computer
    de Sousa, R
    Hu, XD
    Das Sarma, S
    PHYSICAL REVIEW A, 2001, 64 (04): : 423071 - 423079
  • [30] Structural, optical and electrical properties of PbS and PbSe quantum dot thin films
    E. M. El-Menyawy
    G. M. Mahmoud
    R. S. Ibrahim
    F. S. Terra
    H. El-Zahed
    I. K. El Zawawi
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 10070 - 10077